Terahertz polarizing component on cyclo-olefin polymer


  • Antonio Ferraro Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Roma 00133, and Department of Physics, University of Calabria, Via Ponte Bucci Cubo 33b, 87036 Rende, Italy http://orcid.org/0000-0003-0189-6729
  • Dimitrios C. Zografopoulos Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Roma 00133 http://orcid.org/0000-0001-7499-5547
  • Roberto Caputo Department of Physics, University of Calabria, Via Ponte Bucci Cubo 33b, 87036 Rende, Italy
  • Romeo Beccherelli Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Roma 00133




Wire-grid polarizers constitute a traditional component for the control of polarization in free-space devices that operate in a broad part of the electromagnetic spectrum. Here, we present an aluminium-based THz wire grid polarizer, fabricated on a sub-wavelength thin flexible and conformal foil of Zeonor polymer having a thickness of 40um. The fabricated device,characterized by means of THz time-domain spectroscopy, exhibitsa high extinction ratio between 30 and 45dB in the 0.3-2.1THz range. The insertion losses oscillate between 0 and 1.1dB andthey stemalmost exclusively from moderate Fabry-Perót reflections and it is engineered forvanishing at 2THz for operation with quantum cascade lasers.

Full Text: PDF

  1. I. F. Akyildiz, J. M. Jornet, C. Han, "Terahertz band: Next frontier for wireless communications", Phys. Commun. 12, 16 (2014). CrossRef
  2. M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, W.R. Tribe, "Security applications of terahertz technology", Proc. SPIE 5070, 44 (2003). CrossRef
  3. M. Schirmer, M. Fujio, M. Minami, J. Miura, T. Araki, T. Yasui, "Biomedical applications of a real-time terahertz color scanner", Biomed. Opt. Express 1, 354 (2010). CrossRef
  4. R.P. Cogdill, R.N. Forcht, Y. Shen, P.F. Taday, J.R. Creekmore, C.A. Anderson, J.K. Drennen, "Comparison of Terahertz Pulse Imaging and Near-Infrared Spectroscopy for Rapid, Non-Destructive Analysis of Tablet Coating Thickness and Uniformity", J. Pharm. Innov. 2, 29 (2007). CrossRef
  5. Y.-C. Shen, "Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review", Int. J. Pharm. 417, 48(2011). CrossRef
  6. A.G. Davies, A.D. Burnett, W. Fan, E.H. Linfield, J.E. Cunningham, "Terahertz spectroscopy of explosives and drugs", Mater. Today 11, 18 (2008). CrossRef
  7. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, "THz imaging and sensing for security applications?explosives, weapons and drugs", Semicond. Sci. Technol. 20, S266 (2005). CrossRef
  8. D. Saeedkia, Handbook of Terahertz Technology for Imaging, Sensing and Communications (Elsevier, 2013).
  9. N. Born, M. Reuter, M. Koch, M. Scheller, "High-Q terahertz bandpass filters based on coherently interfering metasurface reflections", Opt. Lett. 38, 908 (2013). CrossRef
  10. A. Ferraro, D.C. Zografopoulos, R. Caputo, R. Beccherelli, "Periodical Elements as Low-Cost Building Blocks for Tunable Terahertz Filters", IEEE Photonics Technol. Lett. 28, 2459 (2016). CrossRef
  11. A. Ferraro, D.C. Zografopoulos, R. Caputo, R. Beccherelli, "Broad- and Narrow-Line Terahertz Filtering in Frequency-Selective Surfaces Patterned on Thin Low-Loss Polymer Substrates", IEEE J. Sel. Top. Quantum Electron. 23 (2017). CrossRef
  12. B. S.-Y. Ung, B. Weng, R. Shepherd, D. Abbott, C. Fumeaux, "Inkjet printed conductive polymer-based beam-splitters for terahertz applications", Opt. Mater. Express 3, 1242 (2013). CrossRef
  13. J.-S. Li, D. Xu, J. Yao, "Compact terahertz wave polarizing beam splitter", Appl. Opt. 49, 4494 (2010). CrossRef
  14. K. Altmann, M. Reuter, K. Garbat, M. Koch, R. Dabrowski, I. Dierking, "Polymer stabilized liquid crystal phase shifter for terahertz waves", Opt. Express 21, 12395 (2013). CrossRef
  15. D.C. Zografopoulos, R. Beccherelli, "Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching", Sci. Rep. 5, 13137 (2015). CrossRef
  16. G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, R. Gajić, "Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals", Phys. Rev. Appl. 3, 064007 (2015). CrossRef
  17. K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, P.U. Jepsen, "Flexible metamaterial absorbers for stealth applications at terahertz frequencies", Opt. Express 20, 635 (2012). CrossRef
  18. F. Yan, C. Yu, H. Park, E.P.J. Parrott, E. Pickwell-MacPherson, "Advances in Polarizer Technology for Terahertz Frequency Applications", J. Infrared Millim. Terahertz Waves 34, 489 (2013). CrossRef
  19. http://www.tydexoptics.com DirectLink
  20. K. Imakita, T. Kamada, M. Fujii, K. Aoki, M. Mizuhata, S. Hayashi, "Terahertz wire grid polarizer fabricated by imprinting porous silicon", Opt. Lett. 38, 5067 (2013). CrossRef
  21. A. Isozaki, et al., "Double-layer wire grid polarizer for improving extinction ratio", Solid-State Sens. Actuators Microsyst. Transducers Eurosensors XXVII 2013 Transducers Eurosensors XXVII 17th Int. Conf. On, IEEE, pp. 530?533 (2013). DirectLink
  22. A. Ferraro, D. C. Zografopoulos, M. Missori, M. Peccianti, R. Caputo, R. Beccherelli, "Flexible terahertz wire grid polarizer with high extinction ratio and low loss", Opt. Lett. 41, 2009(2016). CrossRef
  23. M.S. Vitiello, G. Scalari, B. Williams, P.D. Natale, "Quantum cascade lasers: 20 years of challenges", Opt. Express 23, 5167(2015). CrossRef
  24. A. Podzorov, G. Gallot, "Low-loss polymers for terahertz applications", Appl. Opt. 47, 3254(2008). CrossRef




How to Cite

Ferraro, A., Zografopoulos, D. C., Caputo, R., & Beccherelli, R. (2017). Terahertz polarizing component on cyclo-olefin polymer. Photonics Letters of Poland, 9(1), pp. 2–4. https://doi.org/10.4302/plp.v9i1.699