https://www.photonics.pl/PLP/index.php/letters/issue/feedPhotonics Letters of Poland2022-12-31T17:40:09+01:00Photonics Letters of Polandletters@photonics.plOpen Journal Systems<p>PSP Photonics Letters of Poland (ISSN 2080-2242) is a new peer-reviewed web-based, open-access journal published by the <a>Photonics Society of Poland</a> and co-sponsored by <a href="http://spie.org">SPIE</a>. Journal is also supported by the Ministry of Science and Higher Education of Poland in the frame of the project 699/P-DUN/2017.</p>https://www.photonics.pl/PLP/index.php/letters/article/view/14-25Multiphoton scanning laser microscope based on femtosecond fiber laser2022-12-31T17:40:07+01:00Alicja Kwaśnyalicja.kwasny@pwr.edu.plJakub Bogusławskijakub.boguslawski@pwr.edu.plGrzegorz Sobońgrzegorz.sobon@pwr.edu.plWe present a multiphoton scanning laser microscope based on a femtosecond frequency-doubled erbium-doped fiber laser. The laser used in the epi-illumination microscope setup generated 95 fs pulses at the wavelength of 780 nm with 44.3 mW average power at 100 MHz pulse repetition rate. The imaging process was controlled by custom software developed in the NI LabVIEW environment. Detection of two-photon fluorescence was proven by acquiring a series of images from various biological samples. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/14-25/703" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>J.W. Lichtman, J.A. Conchello, "Fluorescence microscopy", Nature methods 2(12), 910 (2005). <a class="file" href="https://doi.org/10.1038/nmeth817" target="_parent"> CrossRef </a></li><li>W. Zipfel, R. Williams, W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences", Nat. Biotechnol. 21, 1369 (2003). <a class="file" href="https://doi.org/10.1038/nbt899" target="_parent"> CrossRef </a></li><li>Coherent, Chameleon Ultra Datasheet (2019). <a class="file" href="https://content.coherent.com/legacy-assets/pdf/COHR_ChameleonUltra_DS_0119_3.pdf" target="_parent"> DirectLink </a></li><li>J. Boguslawski et al., "In vivo imaging of the human eye using a 2-photon-excited fluorescence scanning laser ophthalmoscope", J. Clin. Invest. 132(2), e154218 (2022). <a class="file" href="https://doi.org/10.1172/JCI154218" target="_parent"> CrossRef </a></li><li>M.J. Marzejon et al., "Two-photon microperimetry with picosecond pulses", Biomed. Opt. Expr. 12, 462 (2021). <a class="file" href="https://doi.org/10.1364/BOE.411168" target="_parent"> CrossRef </a></li><li>A. Fast et al., "Institutional Drivers Influence on CSR Engagement: A Comparison of Developed & Developing Economies", Sci. Rep. 10, 18093 (2020). <a class="file" href="https://doi.org/10.5465/AMBPP.2020.18093abstract" target="_parent"> CrossRef </a></li><li>D. Stachowiak et al., "Femtosecond Er-doped fiber laser source tunable from 872 to 1075 nm for two-photon vision studies in humans", Biomed. Opt. Expr. 13, 1899 (2022). <a class="file" href="https://doi.org/10.1364/BOE.452609" target="_parent"> CrossRef </a></li><li>MenloSystems, T-light Femtosecond Fiber Laser 1560 nm (2013). <a class="file" href="https://www.photonicsolutions.co.uk/upfiles/MENLO-T-Light.pdf" target="_parent"> DirectLink </a></li><li>J. Yao, L.V. Wang, "Photoacoustic microscopy", Laser and Photonics Rev. 7, 758 (2013). <a class="file" href="https://doi.org/10.1002/lpor.201200060" target="_parent"> CrossRef </a></li><li>D. Stachowiak et al., "Frequency-doubled femtosecond Er-doped fiber laser for two-photon excited fluorescence imaging", Biomed. Opt. Expr. 11, 4431 (2020). <a class="file" href="https://doi.org/10.1364/BOE.396878" target="_parent"> CrossRef </a></li><li>B.R. Masters et al., "Mitigating thermal mechanical damage potential during two-photon dermal imaging", J. Biomed. Opt. 9, 1265 (2004). <a class="file" href="https://doi.org/10.1117/1.1806135" target="_parent"> CrossRef </a></li></ol>2022-12-31T00:00:00+01:00Copyright (c) 2022 Photonics Letters of Polandhttps://www.photonics.pl/PLP/index.php/letters/article/view/14-26Prediction of LED luminaire spectral power distribution using a mathematical model developed based on interpolation method2022-12-31T17:40:07+01:00Roman Sikoraroman.sikora@p.lodz.plPrzemysław Markiewiczroman.sikora@p.lodz.plAndrzej Pawlakroman.sikora@p.lodz.plLED luminaires with controllable luminous flux are increasingly used, mainly due to the need to reduce electricity consumption, which is the equivalent of improving the energy efficiency of a lighting installation. Changing the dimming level changes the spectral power distribution of the luminaire or light source. Knowledge of dimming characteristics including spectral power distribution relationships provides the opportunity to optimize control algorithms and predict the impact of lighting parameters on the work surface. The paper presents a mathematical model to calculate the spectral power distribution of an LED luminaire for any level of dimming. Two interpolation methods were used to develop the model, fitted by polynomial functions and spline functions. Validation of the model was performed for two values of control voltage-dimming levels. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/14-26/704" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>J. Silva, J.F.G. Mendes, L.T. Silva, "Assessment Of Energy Efficiency In Street Lighting Design", WIT Transaction on Ecology and the Environment 129, 705 (2010). <a class="file" href="htps://doi.org/10.2495/SC100601" target="_parent"> CrossRef </a></li><li>A. Nardelli, E. Deuschle, L.Dalpaz de Azevedo, J. Lorenço Novaes Pessoa, E. Ghisi, "Assessment of Light Emitting Diodes technology for general lighting: A critical review", Renewable and Sustainable Energy Rev. 75, 368 (2017). <a class="file" href="https://doi.org/10.1016/j.rser.2016.11.002" target="_parent"> CrossRef </a></li><li>O. Rabaza, D. Gómez-Lorente, F. Pérez-Ocón, A. Peña-García, "A simple and accurate model for the design of public lighting with energy efficiency functions based on regression analysis", Energy 107, 831 (2016). <a class="file" href="https://doi.org/10.1016/j.energy.2016.04.078" target="_parent"> CrossRef </a></li><li>S. Raggiunto, A. Belli, L. Palma, P. Ceregioli, M. Gattari, P. Pierleoni, "An Efficient Method for LED Light Sources Characterization", Electronics 8(10), 1089 (2019). <a class="file" href="https://doi.org/10.3390/electronics8101089" target="_parent"> CrossRef </a></li><li>I. Rachev, T. Djamiykov, M. Marinov, N. Hinov, "Improvement of the Approximation Accuracy of LED Radiation Patterns", Electronics 8, 337 (2019). <a class="file" href="https://doi.org/10.3390/electronics8030337" target="_parent"> CrossRef </a></li></ol>2022-12-31T00:00:00+01:00Copyright (c) 2022 Photonics Letters of Polandhttps://www.photonics.pl/PLP/index.php/letters/article/view/14-27Polymer tapered pillar on a fiber end fabricated by UV irradiation using a high-NA fiber2022-12-31T17:40:07+01:00Taiga Kurisawa1ceim021@cc.u-tokai.ac.jpYoshiki Kamiura1ceim015@cc.u-tokai.ac.jpChiemi Fujikawachiemi@tokai.ac.jpOsamu Mikamimikamiosamu33@gmail.comThe increasing need for single-mode fibers (SMFs) and advances in silicon photonics (SiPh) devices have led to the need for an efficient method of optical coupling between them. To achieve a higher coupling between them, a polymer tapered pillar was fabricated on the end face of the SMF by applying the optical diffraction effect and a self-written waveguide technology using a high numerical aperture (HiNA) fiber. The initial 10.4 µm spot size was reduced to 4.17 µm at 1.55 µm wavelength, and the greatest coupling efficiency of –1.01 dB was reached between an SMF with a tapered pillar and uncured resin cladding and a HiNA fiber. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/14-27/705" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>R. Marchetti, C. Lacava, L. Carroll, K. Gradkowski, P. Minzioni, "Coupling strategies for silicon photonics integrated chips [Invited]", Photonics Res. 7, 201 (2019). <a class="file" href="https://doi.org/10.1364/PRJ.7.000201" target="_parent"> CrossRef </a></li><li>R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, D.-J. Lougnot, "Integration of micrometer-sized polymer elements at the end of optical fibers by free-radical photopolymerization", Appl. Opt. 40, 5860 (2001). <a class="file" href="https://doi.org/10.1364/AO.40.005860" target="_parent"> CrossRef </a></li><li>P. Pura, M. Szymanski, M. Dudek, L.R. Jaroszewicz, P. Marc, M. Kujawinska, "Polymer Microtips at Different Types of Optical Fibers as Functional Elements for Sensing Applications", J. Lightwave Techn. 33, 2398 (2015). <a class="file" href="https://doi.org/10.1109/JLT.2014.2385961" target="_parent"> CrossRef </a></li><li>O. Mikami, R. Sato, S. Suzuki, C. Fujikawa, "Polymer Microlens on Pillar Grown From Single-Mode Fiber Core for Silicon Photonics", IEEE Photonics. Technol. Lett. 32, 399 (2020). <a class="file" href="https://doi.org/10.1109/LPT.2020.2977394" target="_parent"> CrossRef </a></li><li>Y. Kamiura, T. Kurisawa, C. Fujikawa, O. Mikami, "High optical coupling efficiency of polymer microlens and pillar on single mode fiber for silicon photonics", Jpn. J. Appl. Phys. 61, SK1009 (2022). <a class="file" href="https://doi.org/10.35848/1347-4065/ac6386" target="_parent"> CrossRef </a></li><li>F. Tan, H. Terasawa, O. Sugihara, A. Kawasaki, T. Yamashita, D. Inoue, M. Kagami, C. Andraud, "Two-Photon Absorption Light-Induced Self-Written Waveguide for Single-Mode Optical Interconnection", J. Lightwave Tech. 36, 2478 (2018). <a class="file" href="https://doi.org/10.1109/JLT.2018.2815701" target="_parent"> CrossRef </a></li><li>H. Terasawa, O. Sugihara, "Near-Infrared Self-Written Optical Waveguides for Fiber-to-Chip Self-Coupling", J. Lightwave Technol. 39, 7472 (2021). <a class="file" href="https://doi.org/10.1364/JLT.39.007472" target="_parent"> CrossRef </a></li><li>K. Vanmol, K. Saurav, V. Panapakkam, H. Thienpont, N. Vermeulen, J. Watté, J. Van Erps, "Mode-field Matching Down-Tapers on Single-Mode Optical Fibers for Edge Coupling Towards Generic Photonic Integrated Circuit Platforms", J. Lightwave Tech. 38, 4834 (2020). <a class="file" href="https://doi.org/10.1109/JLT.2020.2997090" target="_parent"> CrossRef </a></li><li>Y. Saito, K. Shikama, T. Tsuchizawa, H. Nishi, A. Aratake, N. Sato, "Tapered Self-Written Waveguide between Silicon Photonics Chip and Standard Single-Mode Fiber", Opt. Fiber Communication Conference (OFC2020), paper W1A.2, (2020). <a class="file" href="https://doi.org/10.1364/OFC.2020.W1A.2" target="_parent"> CrossRef </a></li><li>Y. Saito, K. Shikama, T. Tsuchizawa, N. Sato, "Tapered self-written waveguide for a silicon photonic chip I/O", Opt. Lett. 47(12), 2971 (2022). <a class="file" href="https://doi.org/10.1364/OL.456396" target="_parent"> CrossRef </a></li><li>N.A. Baharudin, C. Fujikawa, O. Mitomi, A. Suzuki, S. Taguchi, O. Mikami, S. Ambran, "Tapered Spot Size Converter by Mask-Transfer Self-Written Technology for Optical Interconnection", Photon. Technol. Lett. 29, 949 (2017). <a class="file" href="https://doi.org/10.1109/LPT.2017.2694964" target="_parent"> CrossRef </a></li><li>H. Nawata, K. Ohmori, Proc. International Conference on Electronics Packaging (ICEP), paper 23 (2014) <a class="file" href="http://toc.proceedings.com/22467webtoc.pdf" target="_parent"> DirectLink </a></li><li>S. J. Frisken, "Light-induced optical waveguide uptapers", Opt. Lett. 18, 1035 (1993). <a class="file" href="https://doi.org/10.1364/OL.18.001035" target="_parent"> CrossRef </a></li><li>Y. Obata, Y. Oyama, H. Ozawa, T. Ito, O. Mikami, T. Uchida, "Multi-array Self-written Waveguides using Photo-mask for Optical Surface Mount Technology", International Conference on Electronics Packaging (ICEP), paper 225 (2005). <a class="file" href="https://cir.nii.ac.jp/crid/1570291226061978752" target="_parent"> DirectLink </a></li><li>P. Yin, J.R. Serafini, Z. Su, R. Shiue, E. Timurdogan, M.L. Fanto, S. Preble, "Low connector-to-connector loss through silicon photonic chips using ultra-low loss splicing of SMF-28 to high numerical aperture fibers", Opt. Expr. 27, 24188 (2019). <a class="file" href="https://doi.org/10.1364/OE.27.024188" target="_parent"> CrossRef </a></li><li>https://coherentinc.force.com/Coherent/UHNA3?cclcl=en_US, (18/09/2022). <a class="file" href="https://coherentinc.force.com/Coherent/UHNA3?cclcl=en_US" target="_parent"> DirectLink </a></li></ol>2022-12-31T00:00:00+01:00Copyright (c) 2022 Photonics Letters of Polandhttps://www.photonics.pl/PLP/index.php/letters/article/view/14-28Matrix data analysis methods for applications in laser beam position measurement modules2022-12-31T17:40:08+01:00Grzegorz Budzyńgrzegorz.budzyn@pwr.edu.plJedrzej Baranskigrzegorz.budzyn@pwr.edu.plJanusz Rzepkagrzegorz.budzyn@pwr.edu.plThis paper addresses the problem of selecting an optimal algorithm suitable for real-time processing of matrix sensor data in laser beam positioning applications. We compare four different algorithms and prove that the chosen one provides the same results in time by several orders of magnitude lower and with negligible memory consumption, making it suitable for use in microcontroller-based sensing modules. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/14-28/706" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>S. Donati, Electro-Optical Instrumentation-Sensing and Measuring with Lasers (Prentice Hall, Upper Saddle River, NJ, 2004). <a class="file" href="https://www.worldcat.org/title/electro-optical-instrumentation-sensing-and-measuring-with-lasers/oclc/54407827" target="_parent"> DirectLink </a></li><li>K.N. Joo, J.D. Ellis, E.S. Buice, J.W. Spronck, R.H. Munning Schmidt, "High resolution heterodyne interferometer without detectable periodic nonlinearity", Optics Expr. 18(2), 1159 (2010). <a class="file" href="https://doi.org/10.1364/OE.18.001159" target="_parent"> CrossRef </a></li><li>G. Budzyń, J. Rzepka, "Study on Noises Influencing the Accuracy of CNC Machine Straightness Measurements Methods Based on Beam Position Detection", J. Machine Engin. 20(3), 76 (2020). <a class="file" href="https://doi.org/10.36897/jme/127102" target="_parent"> CrossRef </a></li><li>Reference materials for PSD and CMOS sensors, , referenced 7-11-2022 <a class="file" href="https://www.hamamatsu.com" target="_parent"> CrossRef </a></li><li>S. Das, A. Saha, "Laser Beam Position-Dependent PSD-Based Calibrated Self-Vibration Compensated Noncontact Vibration Measurement System", IEEE Trans. Instr. Meas. 68(9), 3308 (2019). <a class="file" href="https://doi.org/10.1109/TIM.2018.2875604" target="_parent"> CrossRef </a></li><li>P. Zhang, J. Liu, H. Yang, L. Yu, "Position Measurement of Laser Center by Using 2-D PSD and Fixed-Axis Rotating Device", IEEE Access 7, 140319 (2019). <a class="file" href="https://doi.org/10.1109/ACCESS.2019.2943910" target="_parent"> CrossRef </a></li><li>J. Rzepka, G. Budzyn, "Laser measurement system for machine tools", Proc. SPIE 5144, 840 (2003). <a class="file" href="https://doi.org/10.1117/12.500419" target="_parent"> CrossRef </a></li><li>S. Xiang, H. Li, M. Deng et al., "Geometric error identification and compensation for non-orthogonal five-axis machine tools", Int. J. Adv. Manuf. Technol. 96, 2915 (2018). <a class="file" href="https://doi.org/10.1007/s00170-018-1713-7" target="_parent"> CrossRef </a></li><li>N. Hagen, E. Dereniak, "Gaussian profile estimation in two dimensions", App. Opt. 47(36), 6842 (2008). <a class="file" href="https://doi.org/10.1364/AO.47.006842" target="_parent"> CrossRef </a></li><li>S.M. Ross, Introduction to Probability and Statistics for Engineers and Scientists (Academic Press 2014). <a class="file" href="https://doi.org/10.1016/B978-0-12-394811-3.50001-0" target="_parent"> CrossRef </a></li></ol>2022-12-31T00:00:00+01:00Copyright (c) 2022 Photonics Letters of Polandhttps://www.photonics.pl/PLP/index.php/letters/article/view/14-29The ripple-curry amplifier in photonic applications2022-12-31T17:40:09+01:00Marian Gilewskim.gilewski@pb.edu.plThis paper discusses the new design of a amplifier for the miniature MEMS-type spectrometer. The application problem of the new amplifier was the correct conditioning of the sensor's photoelectric pulses. The processed signal was a sequence of pulses that had variable both frequency and amplitude value. Thus, such a broadband amplifier should have the functionality of automatic gain control. This paper describes the concept of the new circuit, develops its detailed application, and then performs validation tests. Measurement results of the new circuit are discussed in the final section of the paper. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/14-29/707" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>C. Ortolani, Flow Cytometry Today. Detectors and Electronics, (Springer 2022). pp. 97-119, <a class="file" href="https://doi.org/10.1007/978-3-031-10836-5_7" target="_parent"> CrossRef </a></li><li>D. Maes, L. Reis, S. Poelman, E. Vissers, V. Avramovic, M. Zaknoune, G. Roelkens, S. Lemey, E. Peytavit, B. Kuyken, "High-Speed Photodiodes on Silicon Nitride with a Bandwidth beyond 100 GHz", Conference on Lasers and Electro-Optics, Optica Publishing Group, (2022). <a class="file" href="https://doi.org/10.1364/CLEO_SI.2022.SM3K.3" target="_parent"> CrossRef </a></li><li>R. Das, Y. Xie, A.P. Knights, "All-Silicon Low Noise Photonic Frontend For LIDAR Applications", 2022 IEEE Photonics Conference (IPC), IEEE Xplore (2022). <a class="file" href="https://doi.org/10.1109/IPC53466.2022.9975750" target="_parent"> CrossRef </a></li><li>FEMTO Messtechnik GmbH, Variable Gain Photoreceiver - Fast Optical Power Meter Series OE-200, <a class="file" href="https://www.femto.de/en/products/photoreceivers/variable-gain-up-to-500-khz-oe-200.html" target="_parent"> DirectLink </a></li><li>M. Nehir, C. Frank, S. Aßmann, E.P. Achterberg, "Improving Optical Measurements: Non-Linearity Compensation of Compact Charge-Coupled Device (CCD) Spectrometers", Sensors 19(12), 2833 (2019). <a class="file" href="https://doi.org/10.3390/s19122833" target="_parent"> CrossRef </a></li><li>F. Thomas,; R. Petzold, C. Becker, U. Werban, "Application of Low-Cost MEMS Spectrometers for Forest Topsoil Properties Prediction", Sensors 21(11), 3927 (2021). <a class="file" href="https://doi.org/10.3390/s21113927" target="_parent"> CrossRef </a></li><li>M. Muhiyudin, D. Hutson, D. Gibson, E. Waddell, S. Song, S. Ahmadzadeh, "Miniaturised Infrared Spectrophotometer for Low Power Consumption Multi-Gas Sensing", Sensors 20(14), 3843 (2020). <a class="file" href="https://doi.org/10.3390/s20143843" target="_parent"> CrossRef </a></li><li>S. Maruyama, T Hizawa, K. Takahashi, K. Sawada, "Optical-Interferometry-Based CMOS-MEMS Sensor Transduced by Stress-Induced Nanomechanical Deflection", Sensors 18(1), 138 (2018). <a class="file" href="https://doi.org/10.3390/s18010138" target="_parent"> CrossRef </a></li><li>S. Merlo, P. Poma, E. Crisà, D. Faralli, M. Soldo, "Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry", Sensors 17(3), 8 (2017). <a class="file" href="https://doi.org/10.3390/s17030462" target="_parent"> CrossRef </a></li><li>M.S. Wei, F. Xing, B. Li, Z. You, "Investigation of Digital Sun Sensor Technology with an N-Shaped Slit Mask", Sensors 11(10), 9764 (2011). <a class="file" href="https://doi.org/10.3390/s111009764" target="_parent"> CrossRef </a></li><li>Z. Yang, T. Albrow-Owen, W. Cai, T. Hasan, "Miniaturization of optical spectrometers", Science 371, 6528 (2021). <a class="file" href="https://doi.org/10.1126/science.abe0722" target="_parent"> CrossRef </a></li><li>Hamamatsu Photonics K.K. Fingertip size, ultra-compact spectrometer head integrating MEMS and image sensor technologies. <a class="file" href="https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ ssd/ c12666ma_ kacc1216e.pdf" target="_parent"> DirectLink </a></li><li>Microchip Technology Inc, MCP6291/1R/2/3/4/5 1.0 mA 10 MHz Rail-to-Rail Op Amp, <a class="file" href="https://ww1.microchip.com/ downloads/en/DeviceDoc/MCP6291-Family-Data-Sheet-DS20001812G.pdf" target="_parent"> CrossRef </a></li><li>Microchip Technology Inc. MCP6021/1R/2/3/4 Rail-to-Rail Input/Output 10 MHz Op Amps, <a class="file" href="https://ww1. microchip.com/downloads/aemDocuments/documents/APID/ProductDocuments/DataSheets/20001685E.pdf" target="_parent"> CrossRef </a></li></ol>2022-12-31T00:00:00+01:00Copyright (c) 2022 Photonics Letters of Poland