Broadband CO2 measurements with VIPA spectrometer in the near-infrared


  • Grzegorz Kowzan
  • Magdalena Paradowska
  • Mikołaj Zaborowski
  • Mateusz Borkowski
  • Piotr Ablewski
  • Szymon Wójtewicz
  • Kamila Stec
  • Tadeusz Robaczewski
  • Daniel Lisak
  • Ryszard S. Trawiński
  • Piotr Masłowski



We demonstrate near-infrared cavity-enhanced optical frequency comb spectroscopy of R branch of CO2 overtone transitions around 1.57µm. The measurement setup is based on an Er:fiber optical frequency comb, high finesse cavity and a VIPA spectrometer. Dither locking scheme provides robust operation and high absorption sensitivity enhancement, while VIPA etalon-based spectrometer provides rapid broadband acquisition with 600 MHz spectral resolution. The sensitivity of the system reaches 2.3×10-9cm-1 at 2×82s acquisition time. We verify the resolution of the experimental setup by comparing the measured spectrum with the high-quality spectrum obtained with cavity ring-down spectrometer.

Full Text: PDF

  1. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka et al., "Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb", Phys. Rev. Lett. 84, 5102 (2000). CrossRef
  2. J.L. Hall, "Nobel Lecture: Defining and measuring optical frequencies", Rev. Mod. Phys. 78, 1279 (2006). CrossRef
  3. T.W. Hänsch, "Nobel Lecture: Passion for precision", Rev. Mod. Phys. 78, 1297 (2006). CrossRef
  4. M.J. Thorpe, J. Ye, "Cavity-enhanced direct frequency comb spectroscopy", Appl. Phys. B 91, 397 (2008). CrossRef
  5. F. Adler, M.J. Thorpe, K.C. Cossel, J. Ye, "Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications", Annu. Rev. Anal. Chem. 3, 175 (2010). CrossRef
  6. P. Masłowski, K.C. Cossel, A. Foltynowicz, J. Ye, Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi, H.-P. Loock, eds., Springer Series in Optical Sciences (Springer Berlin Heidelberg, 2014), Vol. 179, p. 271.
  7. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, "Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection", Science 311, 1595 (2006). CrossRef
  8. F. Keilmann, C. Gohle, R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer", Opt. Lett. 29, 1542 (2004). CrossRef
  9. I. Coddington, W.C. Swann, N.R. Newbury, "Coherent Multiheterodyne Spectroscopy Using Stabilized Optical Frequency Combs", Phys. Rev. Lett. 100, 013902 (2008). CrossRef
  10. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem et al., "Cavity-enhanced dual-comb spectroscopy", Nat. Photonics 4, 55 (2010). CrossRef
  11. A. Foltynowicz, T. Ban, P. Masłowski, F. Adler, J. Ye, "Quantum-Noise-Limited Optical Frequency Comb Spectroscopy", Phys. Rev. Lett. 107, 233002 (2011). CrossRef
  12. S. Kassi, K. Didriche, C. Lauzin, X. de G. d'Elseghem Vaernewijckb, A. Rizopoulos, M. Herman, "", Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 75, 142 (2010). CrossRef
  13. A. Khodabakhsh, A.C. Johansson, A. Foltynowicz, "Noise-immune cavity-enhanced optical frequency comb spectroscopy: a sensitive technique for high-resolution broadband molecular detection", Appl. Phys. B 119, 87 (2015). CrossRef
  14. A. Foltynowicz, P. Masłowski, A.J. Fleisher, B.J. Bjork, J. Ye, "Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide", Appl. Phys. B 110, 163 (2012). CrossRef
  15. T. Gherman, D. Romanini, "Mode–locked cavity–enhanced absorption spectroscopy", Opt. Express 10, 1033 (2002). CrossRef
  16. M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, "Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis", Opt. Express 16, 2387 (2008). CrossRef
  17. D. Romanini, I. Ventrillard, G. Mejean, J. Morville, E. Kerstel, Cavity-Enhanced Spectroscopy and Sensing, G. Gagliardi and H.-P. Loock, eds., Springer Series in Optical Sciences (Springer Berlin Heidelberg, 2014), Vol. 179, p. 1.
  18. S. Xiao, A.M. Weiner, C. Lin, "A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory", Quantum Electron. IEEE J. Of 40, 420 (2004). CrossRef
  19. M. Shirasaki, "Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer", Opt. Lett. 21, 366 (1996). CrossRef
  20. S. Xiao, A.M. Weiner, "2-D wavelength demultiplexer with potential for ≥ 1000 channels in the C-band", Opt. Express 12, 2895 (2004). CrossRef
  21. P.M. Cox, R.A. Betts, C.D. Jones, S.A. Spall, I.J. Totterdell, "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model", Nature 408, 184 (2000). CrossRef
  22. A. Butz, S. Guerlet, O. Hasekamp, D. Schepers, A. Galli, I. Aben et al., "Toward accurate CO2 and CH4 observations from GOSAT", Geophys. Res. Lett. 38, (2011). CrossRef
  23. L S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath et al., "The HITRAN2012 molecular spectroscopic database", J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013). CrossRef
  24. A. Cygan, S. Wójtewicz, J. Domysławska, P. Masłowski, K. Bielska, M. Piwiński et al., "Spectral line-shapes investigation with Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy", Eur. Phys. J. Spec. Top. 222, 2119 (2013). CrossRef
  25. S. Wójtewicz, K. Stec, P. Masłowski, A. Cygan, D. Lisak, R.S.Trawiński et al., "Low pressure line-shape study of self-broadened CO transitions in the (3←0) band", J. Quant. Spectrosc. Radiat. Transf. 130, 191 (2013). CrossRef




How to Cite

G. Kowzan, “Broadband CO2 measurements with VIPA spectrometer in the near-infrared”, Photonics Lett. Pol., vol. 7, no. 3, pp. pp. 78–80, Sep. 2015.