Bow-tie diodes for terahertz imaging: Comparative study

Gintaras Valusis, Rimvydas Venckevicius, Irmantas Kasalynas


Concept of broadband bow-tie diodes as terahertz sensors and their possible application for imaging is presented. Different bow-tie sensors fabricated of planar GaAs, modulation doped GaAs/AlGaAs structures and InGaAs layers are compared and discussed. It is demonstrated experimentally that the sensitivity of all studies devices at room temperature is nearly independent of frequency below 1THz and amounts to 0.3V/W for GaAs-based structures and 10V/W for InGaAs sensors. Room temperature terahertz images are recorded at 0.71THz and 1.4THz. Their parameters are considered in comparison of images taken using commercially available pyro-electric sensors.

Full Text: PDF

  1. A. Maestrini et al., "Design and Characterization of a Room Temperature All-Solid-State Electronic Source Tunable From 2.48 to 2.75 THz", IEEE Trans. Terahertz Sci. Technol. 2, 177 (2012).CrossRef
  2. P.H. Siegel, "Terahertz technology", IEEE Trans. Microwave Theory Tech. 50, 910 (2002). CrossRef
  3. W. Knap et al., "Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor", Appl. Phys. Lett. 80, 3433 (2002). CrossRef
  4. A. Lisauskas et al., "Terahertz imaging with GaAs field-effect transistors", Electron. Lett. 44, 408 (2008). CrossRef
  5. A.W.M. Lee et al., "Real-time imaging using a 4.3-THz quantum cascade laser and a 320 /spl times/ 240 microbolometer focal-plane array", IEEE Photon. Technol. Lett. 18, 1415 (2006). CrossRef
  6. Duy-Thong Nguyen et al., "Broadband THz Uncooled Antenna-Coupled Microbolometer Array—Electromagnetic Design, Simulations and Measurements", IEEE Trans. Terahertz Sci. Technol. 2, 299 (2012). CrossRef
  7. I. Kašalynas et al., "InGaAs-based bow-tie diode for spectroscopic terahertz imaging", J. Appl. Phys. 110, 114505 (2011). CrossRef
  8. L. Minkevičius et al., "Terahertz heterodyne imaging with InGaAs-based bow-tie diodes", Appl. Phys. Lett. 99, 131101 (2011). CrossRef
  9. D. Seliuta et al., "Detection of terahertz?sub-terahertz radiation by asymmetrically-shaped 2DEG layers", Electron. Lett. 40, 631 (2004). CrossRef
  10. D. Seliuta et al., "Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature", Electron. Lett. 42, 825 (2006). CrossRef
  11. A. Sužied?lis et al., "Giga- and terahertz frequency band detector based on an asymmetrically necked n-n+-GaAs planar structure", J. Appl. Phys. 93, 3034 (2003). CrossRef
  12. L. Minkevičius et al., "Frequency-Dependent Properties of InGaAs Bow-Tie Detectors in Terahertz Rnge", Lith. J. Phys. 50, 173 (2010). CrossRef
  13. I. Kašalynas et al., "Terahertz imaging with bow-tie InGaAs-based diode with broken symmetry", Electron Lett. 45, 833 (2009). CrossRef
  14. L. Minkevičius et al., Proc. 19th Intern. Conf. Microwaves, Radar, and Wireless Comm. MIKON 2012, IEEE 2012, p.105.
  15. F. Schuster et al, "Broadband terahertz imaging with highly sensitive silicon CMOS detectors", Opt. Express 19, 7827 (2011). CrossRef
  16. S. Boppel at al., "Performance and performance variations of sub-1?THz detectors fabricated with 0.15?[micro sign]m CMOS foundry process", Electron. Lett. 47, 661 (2011).CrossRef
  17. S. Nadar et al., "Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors", J. Appl. Phys. 108, 054508 (2010). CrossRef
  18. Duy-Thong Nguyen et al., Proc. 19th Intern. Conf. Microwaves, Radar, and Wireless Comm. MIKON 2012, IEEE 2012, p.116.

Full Text:


We use cookies that are necessary for the website to function and cannot be switched off in our systems. Click here for more information.

Photonics Letters of Poland - A Publication of the Photonics Society of Poland
Published in cooperation with SPIE

ISSN: 2080-2242