Imaging limbal and scleral vasculature using Swept Source Optical Coherence Tomography


  • Ireneusz Grulkowski Massachusetts Institute of Technology
  • Jonathan J. Liu Massachusetts Institute of Technology
  • Bernhard Baumann Massachusetts Institute of Technology
  • Ben Potsaid Massachusetts Institute of Technology
  • Chen Lu Massachusetts Institute of Technology
  • James G. Fujimoto Massachusetts Institute of Technology



We demonstrate application of high-speed swept source optical coherence tomography for vessel visualization in the anterior segment of the human eye. The human corneo-scleral junction and sclera was imaged in vivo. Imaging was performed using a swept source OCT system operating at 1050nm wavelength range and 100kHz A-scan rate. The high imaging speed enables generation of 3D depth-resolved vasculature maps. The vessel visualization method revealed the rich vascular system in the conjunctiva and episclera.

Full Text: PDF

  1. D. Huang et al., "Optical coherence tomography", Science 254, 1178 (1991). [CrossRef]
  2. W. Drexler, J. G. Fujimoto (ed.), Optical Coherence Tomography. Technology and Applications (Springer, Berlin-Heidelberg 2008).
  3. A.M. Zysk, A. L. Oldenburg, D.L. Marks, F.T. Nguyen, S.A. Boppart, "Optical coherence tomography: a review of clinical development from bench to bedside", J. Biomed. Opt. 12, 051403 (2007). [CrossRef]
  4. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, D. Huang, "Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography", Opt. Exp. 17, 4061 (2009). [CrossRef]
  5. M. Pircher, C.K. Hitzenberger, U. Schmidt-Erfurth, " Polarization sensitive optical coherence tomography in the human eye", Prog. Ret. Eye Res. 30, 431 (2011). [CrossRef]
  6. M. Wojtkowski, "High-speed optical coherence tomography: basics and applications", Appl. Opt. 49, D30 (2010). [CrossRef]
  7. J. A. Izatt et al., "Micrometer-Scale Resolution Imaging of the Anterior Eye In Vivo With Optical Coherence Tomography", Arch. Ophthalmol. 112, 1584 (1994). [CrossRef]
  8. M. Gora et al., "Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range", Opt. Exp. 17, 14880 (2009). [CrossRef]
  9. B. Potsaid et al., "Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second", Opt. Exp. 18, 20029 (2010). [CrossRef]
  10. Y. Yasuno et al., "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments", Opt. Exp. 13, 10652 (2005). [CrossRef]
  11. D.R. Anderson, Am. J. Ophthalmol. 108, 485 (1989).
  12. R.K. Wang, L. An, P. Francis, D.J. Wilson, "Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo", Opt. Exp. 17, 8926 (2009). [CrossRef]
  13. B.J. Vakoc et al., "Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging", Nature Med. 15, 1219 (2009). [CrossRef]
  14. K. Bizheva, N. Hutchins, L. Sorbara, A.A. Moayed, T. Simpson, "In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT", Biomed. Opt. Exp. 2, 1794 (2011). [CrossRef]
  15. L. Kagemann et al., "Identification and Assessment of Schlemm's Canal by Spectral-Domain Optical Coherence Tomography", Invest. Ophthalmol. Vis. Sci. 51, 4054 (2010). [CrossRef]
  16. L. Kagemann et al.,"3D visualization of aqueous humor outflow structures in-situ in humans", Exp. Eye Res., 93, 308 (2011). [CrossRef]
  17. P. Li et al., "In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography", Biomed. Opt. Exp. 2, 3109 (2011). [CrossRef]
  18. M.A. Choma, M.V. Sarunic, Ch. Yang, J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography", Opt. Exp. 11, 2183 (2003). [CrossRef]


Additional Files



How to Cite

I. Grulkowski, J. J. Liu, B. Baumann, B. Potsaid, C. Lu, and J. G. Fujimoto, “Imaging limbal and scleral vasculature using Swept Source Optical Coherence Tomography”, Photonics Lett. Pol., vol. 3, no. 4, pp. pp. 132–134, Dec. 2011.