THz diffractive focusing structures for broadband application


  • Karolina Liebert
  • Martyna Rachoń
  • Jarosław Bomba
  • Artur Sobczyk
  • Przemysław Zagrajek
  • Maciej Sypek
  • Jarosław Suszek
  • Agnieszka Siemion Warsaw University of Technology



Analysis of optical structures that can work for broadband range of THz radiation is the aim of this article. Such structures can be designed as kinoforms of higher order or elements with extended depth of focus, like axicons or light sword elements. The theoretical and experimental comparison of different optical elements for three significantly different frequencies is performed.

Full Text: PDF

  1. M. C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, W.R. Tribe, "Security applications of terahertz technology", International Society for Optics and Photonics, 5070, pp. 44-53 (2003). CrossRef
  2. D. Yavorskiy, J. Marczewski, K. Kucharski, et al., "THz Scanner Based on Planar Antenna-Supplied Silicon Field-Effect Transistors", Photonics Letters of Poland, 4(3), 100-102 (2012). CrossRef
  3. A.A. Angeluts, A.B. Gapeyev, M.N. Esaulkov, et al., "Study of terahertz-radiation-induced DNA damage in human blood leukocytes", Quantum Electronics, 44(3), 247 (2014). CrossRef
  4. Q. Sun, Y. He, K. Liu, S. Fan, E.P. Parrott, E. Pickwell-MacPherson, "Recent advances in terahertz technology for biomedical applications", Quantitative imaging in medicine and surgery, 7(3), 345 (2017). CrossRef
  5. J. Suszek, A. Siemion, M. Bieda, et al., "3-D-Printed Flat Optics for THz Linear Scanners", IEEE Thz Sci. T. 5, (2015). CrossRef
  6. M. Naftaly, R. Dudley, "Methodologies for determining the dynamic ranges and signal-to-noise ratios of terahertz time-domain spectrometers", Optics Letters, 34(8), 1213-1215 (2009). CrossRef
  7. C. Bruckner, G. Notnia, and A. Tünnermann, "Optimal arrangement of 90° off-axis parabolic mirrors in THz setups", Optik, 121, 1 (2010). CrossRef
  8. J. Richter, A. Hofmann, L.-P. Schmidt, "Dielectric Wide Angle Lenses for Millimeter-Wave Focal Plane Imaging", Proc. of the 31st European Microwave Conference, London, UK (2001). CrossRef
  9. E.D. Walsby, S. M. Durbin, D.R S. Cumming, R.J. Blaikie, "Analysis of silicon terahertz diffractive optics", Curr. App. Phys., 4, (2004). CrossRef
  10. J.A. Jordan Jr et al, Appl Opt., 9(8), 1883-1887 (1970) CrossRef
  11. J.C. Marron, D.K. Angell, A.M. Tai, "Higher-order kinoforms", International Society for Optics and Photonics, 1211, 62-67 (1990). CrossRef
  12. J. Suszek, A.M. Siemion, N. Błocki, M. Makowski, A. Czerwiński, J. Bomba, P. Zagrajek et al., "High order kinoforms as a broadband achromatic diffractive optics for terahertz beams", Optics Express, 22(3), 3137-3144 CrossRef
  13. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, S. Bara, "Nonparaxial design of generalized axicons", Applied Optics, 31(25), 5326-5330 (1992). CrossRef
  14. A. Kołodziejczyk, S. Bará, Z. Jaroszewicz, M. Sypek, "The Light Sword Optical Element—a New Diffraction Structure with Extended Depth of Focus", Journal of Modern Optics, 37(8), 1283-1286 (1990). CrossRef
  15. M. Sypek, "Light propagation in the Fresnel region. New numerical approach", Opt. Commun., 116, 43–48 (1995). CrossRef
  16. J.P. Kruth, X. Wang, T. Laoui, L. Froyen, "Lasers and materials in selective laser sintering", Assembly Automation, 23(4), 357-371 (2003). CrossRef




How to Cite

K. Liebert, “THz diffractive focusing structures for broadband application”, Photonics Lett. Pol., vol. 10, no. 3, pp. 76–78, Oct. 2018.