TY - JOUR AU - Gontier, Arthur AU - Marae-Djouda, J. AU - Caputo, R. AU - Madi, Y. AU - Molinari, M. AU - Léveque, G. AU - Adam, P.-M. AU - Maurer, T. PY - 2017/03/31 Y2 - 2024/03/29 TI - Optical properties of gold nanorods macro-structure: a numerical study JF - Photonics Letters of Poland JA - Photonics Lett. Pol. VL - 9 IS - 1 SE - Articles DO - 10.4302/plp.v9i1.714 UR - https://www.photonics.pl/PLP/index.php/letters/article/view/9-9 SP - pp. 23-25 AB - In this contribution, a numerical study of the optical properties of closely-packed gold nanorods was performed. The studied nano-objects are experimentally grown on a tilted polydimethylsiloxane (PDMS) substrate by using physical vapor deposition (PVD). This method creates nanorods tilted to a certain angle with respect to the substrate normal. This geometry allows exciting both transverse and longitudinal modes of the rods. As demonstrated in a previous experimental work, such PVD-grown nano-objects show promising possibilities both as strain gauges or strain-tunable metamaterials if fabricated on a stretchable dielectric substrate. This numerical study is based on experimental data from previous work and pushes further the subject by approaching an optimized nano-structure allowing better strain-sensitivity (particularly by changing the auto-organization of the said nanorods). <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/9-9/476" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>J.W.M. Chon, C. Bullen, P. Zijlstra, M. Gu, "Spectral encoding on Gold Nanorods Doped in a Silica Sol?Gel Matrix and Its Application to High-Density Optical Data Storage", Adv. Funct. Mater. 17, 875 (2007). <a class="file" href="https://doi.org/10.1002/adfm.200600565" target="_parent"> CrossRef </a></li><li>C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, Y.-C. Wu, "DNA?Gold Nanorod Conjugates for Remote Control of Localized Gene Expression by near Infrared Irradiation", J. Am. Chem. Soc. 128, 3709 (2006). <a class="file" href="https://doi.org/10.1021/ja0570180" target="_parent"> CrossRef </a></li><li>J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, "Biosensing with plasmonic nanosensors", Nat. Mater 7, 442 (2008). <a class="file" href="https://doi.org/10.1038/nmat2162" target="_parent"> CrossRef </a></li><li>B. Sepulveda, P.C. Angelome, L.M. Lechuga, L.M. Liz-Marzan?, "LSPR-based nanobiosensors", Nano Today 4, 244 (2009). <a class="file" href="http://dx.doi.org/10.1016/j.nantod.2009.04.001" target="_parent"> CrossRef </a></li><li>A. Haes, R.P. Van Duyne, "A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles", J. Am. Chem. Soc. 124, 10596 (2002). <a class="file" href="https://doi.org/10.1021/ja020393x" target="_parent"> CrossRef </a></li><li>J.C. Riboh, A.J. Haes, A.D. McFarland, C.R. Yonzon, R.P. Van Duyne, "A Nanoscale Optical Biosensor: Real-Time Immunoassay in Physiological Buffer Enabled by Improved Nanoparticle Adhesion", J. Phys. Chem. B 107, 1772 (2003). <a class="file" href="https://doi.org/10.1021/jp022130v" target="_parent"> CrossRef </a></li><li>C.R. Yonzon, E. Jeoung, S. Zou, G.C. Schatz, M. Mrksich, R.P. Van Duyne, "A Comparative Analysis of Localized and Propagating Surface Plasmon Resonance Sensors: The Binding of Concanavalin A to a Monosaccharide Functionalized Self-Assembled Monolayer", J. Am. Chem. Soc. 126, 12669 (2004). <a class="file" href="https://doi.org/10.1021/ja047118q" target="_parent"> CrossRef </a></li><li>A.J. Haes, L. Chang, W.L. Klein, R.P. Van Duyne, "Detection of a Biomarker for Alzheimer's Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor", J. Am. Chem. Soc. 127, 2264 (2005). <a class="file" href="https://doi.org/10.1021/ja044087q" target="_parent"> CrossRef </a></li><li>R. Caputo, G. Palermo, M.Infusino L. De Sio, "Liquid Crystals as an Active Medium: Novel Possibilities in Plasmonics", Nanospectroscopy 1, 40 (2015). <a class="file" href="https://doi.org/10.1515/nansp-2015-0003" target="_parent"> CrossRef </a></li><li>T. Maurer, J. Marae-Djouda, U. Cataldi, A. Gontier, G. Montay, Y. Madi, B. Panicaud, D. Macias, P.-M. Adam, G. Lév?que, T. Bürgi, R. Caputo, "The beginnings of plasmomechanics: towards plasmonic strain sensors", Frontiers of Materials Science 9, 170 (2015). <a class="file" href="https://doi.org/10.1007/s11706-015-0290-z" target="_parent"> CrossRef </a></li><li>X. Niu, S. P. Stagon, H. Huang, J.K. Baldwin, A. Misra, "Smallest Metallic Nanorods Using Physical Vapor Deposition", Phys. Rev. Lett. 110 136102 (2013). <a class="file" href="https://doi.org/10.1103/PhysRevLett.110.136102" target="_parent"> CrossRef </a></li><li>Lumerical Solutions, Inc. <a class="file" href="http://www.lumerical.com/tcad-products/fdtd/" target="_parent"> DirectLink </a></li><li>P.K. Jain, W. Huang, M.A.El-Sayed, "On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation", Nanoletters 7, 2080 (2007). <a class="file" href="https://doi.org/10.1021/nl071008a" target="_parent"> CrossRef </a></li><li>P.K. Jain, M.A. El-Sayed, "Plasmonic coupling in noble metal nanostructures", Chem. Phys. Letters 487, 153 (2010). <a class="file" href="https://doi.org/10.1016/j.cplett.2010.01.062" target="_parent"> CrossRef </a></li></ol> ER -