@article{Sękowska_Kamińska_Sabisz_2018, title={Optical method for verification of homogeneity of phantoms for calibration of magnetic resonance}, volume={10}, url={https://www.photonics.pl/PLP/index.php/letters/article/view/10-30}, DOI={10.4302/plp.v10i3.833}, abstractNote={The primary purpose of this study was to develop a laboratory photonic set-up for characterisation of homogeneity of gel phantoms for calibration of a magnetic resonance. In this system optical coherence tomography allows the detection of micro- and macroscopic heterogeneities of a structure. The set-up was used to perform measurements of agar and agar-carrageenan gels, which are the basis for more complex phantoms for magnetic resonance calibration. Obtained results were compared with magnetic resonance tomography methods used to detect macroscopic spatial differences in composition and heterogeneities in phantoms. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/10-30/545" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>Price R. R. et al., Quality assurance methods and phantoms for magnetic resonance imaging: report of AAPM nuclear magnetic resonance Task Group No. 1., Med Phys. 1990 Mar-Apr;17(2):287-95. <a class="file" href="https://doi.org/10.1118/1.596566" target="_parent"> CrossRef </a></li><li>Tofts P.S., QA: quality assurance, accuracy, precision and phantoms. Chapter 3 in Tofts P.S. (ed.) Quantitative MRI of the brain: measuring changes caused by disease. Chichester: John Wiley, 55-81. ISBN: 0-470-84721-2 <a class="file" href="https://doi.org/10.1002/0470869526.ch3" target="_parent"> CrossRef </a></li><li>Wróbel M., Popov A., Bykov A., Tuchin V.V., Jędrzejewska-Szczerska M., Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering, Biomedical Optic Express, vol. 7(6), 2088-2094 (2016). <a class="file" href="https://doi.org/10.1364/BOE.7.002088" target="_parent"> CrossRef </a></li><li>Feder I., Wróbel M., Duadi H., Jędrzejewska-Szczerska M., Fixler D., Experimental results of full scattering profile from finger tissue-like phantom, Biomedical Optic Express, vol. 7 (11), 4695-4701 (2016). <a class="file" href="https://doi.org/10.1364/BOE.7.004695" target="_parent"> CrossRef </a></li><li>Wróbel M. S. et al., Use of optical skin phantoms for pre-clinical evaluation of laser efficiency for skin lesion therapy, Journal of Biomedical Optics, 20(8), 20(8):085003 (2015). <a class="file" href="https://doi.org/10.1117/1.JBO.20.8.085003" target="_parent"> CrossRef </a></li><li>Wróbel M .S. et al., Multi-layered tissue head phantoms for noninvasive optical diagnostics, Journal of Innovative Optical Health Sciences, 8(3), 1541005-1÷1541005-10 (2015). <a class="file" href="http://dx.doi.org/10.1142/S1793545815410059" target="_parent"> CrossRef </a></li><li>Hellerbach A, Schuster V, Jansen A, Sommer J., MRI Phantoms - Are There Alternatives to Agar?, Plos One, 2013;8(8), ARTN e70343. <a class="file" href="https://doi.org/10.1371/journal.pone.0070343" target="_parent"> CrossRef </a></li><li>Almazrouei N. K., Newton M. I., Dye E. R., Morris R. H., Novel food-safe spin-lattice relaxation time calibration samples for use in magnetic resonance sensor development, Proceedings 2018, 2, 122. <a class="file" href="https://doi.org/10.3390/ecsa-4-04916" target="_parent"> CrossRef </a></li><li>Ohno S. et al., Production of a Human-Tissue-Equivalent MRI Phantom: Optimization of Material Heating, Magn Reson Med Sci. 2008;7(3):131-40. <a class="file" href="https://doi.org/10.2463/mrms.7.131" target="_parent"> CrossRef </a></li><li>Choma M. A., SarunicM. V., Yang C., Izatt J. A., Sensitivity advantage of swept source and Fourier domain optical coherence tomography, Opt. Express 11, 2183-2189 (2003). <a class="file" href="https://doi.org/10.1364/OE.11.002183" target="_parent"> CrossRef </a></li><li>Strąkowski M. R., Głowacki M., Kamińska A., Sawczak M., Gold nanoparticles evaluation using functional optical coherence tomography, Proc. SPIE 10053, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI, 1005336 (17 February 2017). <a class="file" href="https://doi.org/10.1117/12.2254912" target="_parent"> CrossRef </a></li></ol>}, number={3}, journal={Photonics Letters of Poland}, author={Sękowska, Anna Magdalena and Kamińska, Aleksandra and Sabisz, Agnieszka}, year={2018}, month={Oct.}, pages={82–84} }