@article{Świtkowski_Jastrzębski_Pałka_Dyczewski_Barcz_2012, title={Performance of a nitrogen implanted large aperture THz emitter}, volume={4}, url={https://www.photonics.pl/PLP/index.php/letters/article/view/4-12}, DOI={10.4302/photon. lett. pl.v4i1.276}, abstractNote={Improved bandwidth of a large aperture nitrogen implanted GaAs photoconductive THz emitter is presented in this paper. An effect of nitrogen ion implantation on semi-insulating GaAs has been studied in a sample implanted at two doses: 3×10<sup>14</sup> and 6×10<sup>14</sup> ions/cm<sup>2</sup>. The carrier life time of the investigated material was measured by means of the femtosecond time-resolved-reflectance technique. The implantation process reduced the carrier lifetime of GaAs by 65%.The bandwidth of the THz emitter was tested in a Time Domain Spectroscopy arrangement. Usable bandwidth of the TDS set-up based on the implanted emitter increased from 1 to 1.5THz. <br /> <br />Full Text: <a class="file" href="/PLP/index.php/letters/article/view/4-12/206" target="_parent">PDF</a> <br /> <strong><br />References:</strong> <ol> <li>M.R. Melloch et al., "Low-Temperature Grown III-V Materials", Annu. Rev. Mater. Sci. 25, 547 (1995).<a href="http://dx.doi.org/10.1146/annurev.ms.25.080195.002555">CrossRef</a> </li> <li>C. Wang, M. Pocha, J. Morse, M. Singh, B. Davis, "Neutron-treated, ultrafast, photoconductor detectors", Appl. Phys. Lett. 54, 1451 (1989).<a href="http://dx.doi.org/10.1063/1.100694">CrossRef</a> </li> <li>H.H. Tan et al., "Ion-implanted GaAs for subpicosecond optoelectronic applications", IEEE J. Sel. Top. Quantum Electron. 2, 636 (1996).<a href="http://dx.doi.org/10.1109/2944.571762">CrossRef</a> </li> <li>P. Kordos, M. Marso, and M. Miculics, "http://dx.doi.org/10.1007/s00339-007-3909-9", Appl. Phys. A, 87 563 (2007).<a href="http://dx.doi.org/10.1007/s00339-007-3909-9">CrossRef</a> </li> <li>W. Shan, K.M. Yu, W. Walukiewicz, J.W. Ager III, E.E. Haller, and M.C. Ridgeway, "Reduction of band-gap energy in GaNAs and AlGaNAs synthesized by N<sup>+</sup> implantation ", Appl. Phys. Lett. 75, 1410 (1999).<a href="http://dx.doi.org/10.1063/1.124951">CrossRef</a> </li> <li>A. Patan?, G. Allison, L. Eaves, M. Hopkinson, G. Hill, and A. Ignatov, "Tailoring the electrical conductivity of GaAs by nitrogen incorporation", J. Phys. Condens. Matter 21, 174209 (2009).<a href="http://dx.doi.org/10.1088/0953-8984/21/17/174209">CrossRef</a> </li> <li>M. Mikulics, M. Marso, P. Kordo, S. Stanek, P. Ková, X. Zheng, S. Wu, and R. Sobolewski, "Ultrafast and highly sensitive photodetectors fabricated on high-energy nitrogen-implanted GaAs", Appl. Phys. Lett. 83, 1719 (2003).<a href="http://dx.doi.org/10.1063/1.1606879">CrossRef</a> </li> <li>A.S. Weiling, B.B. Hu, N. M. Froberg, and D.H. Auston, "Generation of tunable narrow?band THz radiation from large aperture photoconducting antennas", Appl. Phys. Lett. 64, 137 (1994).<a href="http://dx.doi.org/10.1063/1.111543">CrossRef</a> </li> <li>S.G. Park, A.M. Weiner, M.R. Melloch, C.W. Siders, J.L.W. Seiders, and A.J. Taylor, "High-power narrow-band terahertz generation using large-aperture photoconductors", IEEE J. Quantum Electron. 35, 1257 (1999).<a href="http://dx.doi.org/10.1109/3.777228">CrossRef</a> </li> <li>F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids (New York, Pergamon 1985). </li> <li>C.V. Shank et al., "Picosecond time resolved reflectivity of direct gap semiconductors", Solid State Commun. 26, 567 (1978). <a href="http://dx.doi.org/10.1016/0038-1098(78)90765-2">CrossRef</a> </li> </ol>}, number={1}, journal={Photonics Letters of Poland}, author={Świtkowski, Krzysztof Tomasz and Jastrzębski, Cezariusz and Pałka, Norbert and Dyczewski, Jan and Barcz, Adam}, year={2012}, month={Mar.}, pages={pp. 32–34} }