@article{Kazanskiy_Butt_2020, title={One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices}, volume={12}, url={https://www.photonics.pl/PLP/index.php/letters/article/view/12-29}, DOI={10.4302/plp.v12i3.1044}, abstractNote={In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. <br /> <br /> Full Text: <a class="file" href="/PLP/index.php/letters/article/view/12-29/630" target="_parent">PDF</a> <br /> <br /> <strong>References</strong><ol><li>B. Wang, S. Blaize, R.S-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics", Nanoscale, 11, 20685 (2019). <a class="file" href="https://doi.org/10.1039/C9NR06948H" target="_parent"> CrossRef </a></li><li>D. Dai, J.E. Bowers, "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects", Nanophotonics, 3, 283 (2014). <a class="file" href="https://doi.org/10.1515/nanoph-2013-0021" target="_parent"> CrossRef </a></li><li>M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079 (2019). <a class="file" href="https://doi.org/10.18287/2412-6179-2019-43-6-1079-1083" target="_parent"> CrossRef </a></li><li>M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Compact design of a polarization beam splitter based on silicon-on-insulator platform", Laser Physics, 28, 116202 (2018). <a class="file" href="https://doi.org/10.1088/1555-6611/aadf18" target="_parent"> CrossRef </a></li><li>M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "A T-shaped 1  ×  8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides", Laser Physics, 29, 046207 (2019). <a class="file" href="https://doi.org/10.1088/1555-6611/ab0372" target="_parent"> CrossRef </a></li><li>Q. Wang, S.-T. Ho, "Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design", IEEE Photonics J., 2, 49 (2010). <a class="file" href="https://doi.org/10.1109/JPHOT.2010.2041650" target="_parent"> CrossRef </a></li><li>C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, "Compact and integrated TM-pass waveguide polarizer", Opt. Express, 13, 5347 (2005). <a class="file" href="https://doi.org/10.1364/OPEX.13.005347" target="_parent"> CrossRef </a></li><li>S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, "Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. <a class="file" href="https://doi.org/10.1109/Group4.2014.6961981" target="_parent"> CrossRef </a></li><li>X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, "Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide", Opt. Lett., 39, 4514 (2014). <a class="file" href="https://doi.org/10.1364/OL.39.004514" target="_parent"> CrossRef </a></li><li>A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, "Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers", J.Opt. Soc. Am. B., 36, 652 (2019). <a class="file" href="https://doi.org/10.1364/JOSAB.36.000652" target="_parent"> CrossRef </a></li><li>J. Li et al., "Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth", Journal of Lightwave Technology, 31, 1601-1607 (2013). <a class="file" href="https://doi.org/10.1109/JLT.2013.2255025" target="_parent"> CrossRef </a></li><li>N. Skivesen et al., "Photonic-crystal waveguide biosensor", Optics Express, 15, 3169-3176 (2007). <a class="file" href="https://doi.org/10.1364/OE.15.003169" target="_parent"> CrossRef </a></li><li>S. Lin, J. Hu, L. Kimerling, K. Crozier, "Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection", Optics Letters, 34, 3451-3453 (2009). <a class="file" href="https://doi.org/10.1364/OL.34.003451" target="_parent"> CrossRef </a></li><li>T. Liu, A.R. Zakharian, M. Fallahi, J.V. Moloney, M. Mansuripur, "Design of a compact photonic-crystal-based polarizing beam splitter", IEEE Photonics Technology Letters, 17, 1435-1437 (2005). <a class="file" href="https://doi.org/10.1109/LPT.2005.848278" target="_parent"> CrossRef </a></li><li>R. K. Sinha, Y. Kalra, "Design of optical waveguide polarizer using photonic band gap", Optics Express, 14, 10790 (2006). <a class="file" href="https://doi.org/10.1364/OE.14.010790" target="_parent"> CrossRef </a></li></ol>}, number={3}, journal={Photonics Letters of Poland}, author={Kazanskiy, Nikolai Lvovich and Butt, Muhammad Ali}, year={2020}, month={Sep.}, pages={85–87} }