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Abstract—The change of the polarization state is analysed of an 

electromagnetic beam propagating in weakly anisotropic and smoothly 

inhomogeneous media with dissipation. On the basis of a quasi-isotropic 
approximation, which provides a consequent asymptotic solution of 

Maxwell’s equation, a differential equation for the evolution of a four- 

component Stokes vector is derived. The obtained equation generalizes 
the previous results for nonadsorbing media and is written in terms of a 

dielectric tensor of birefringent media with dissipation. The formalism is 

illustrated by an example of magnetised plasma with dissipation due to 
electron collisions.   

 

 

Traditional methods for the analysis of the polarization 

state of an electromagnetic wave passing through 

nonuniform birefringent media have been concentrated on 

the case of negligible wave absorption. In such a case the 

polarization state evolution is limited to a combination of 

polarization plane rotation (the Faraday effect in media 

with circular birefringence) and change in the ellipticity 

state (Cotton-Mouton effect in media with linear 

birefringence). To describe such evolution there are two 

main approaches. The first one deals with coupled wave 

equations for the components of an electromagnetic wave 

field. In stratified media it is Budden’s method [1-2], 

whereas the modification of Budden’s approach for an 

arbitrarily inhomogeneous medium is a quasi-isotropic 

approximation (QIA) of geometric optics [3-6]. The main 

disadvantage of QIA is the fact that for an 

electromagnetic wave it describes the evolution of 

amplitude and phase of each perpendicular component of 

an electric field whereas from polarimetric measurements 

information is obtained on the amplitude of both field 

components and only their phase difference. The second, 

alternative approach – the Stokes vector formalism (SVF) 

for the electromagnetic wave in stratified media, initiated 

in [7] and reviewed in [8], was applied for purposes of 

e.g. fiber and plasma polarimetry. In the case of a medium 

without dissipation, SVF – based on the reduced three-

component Stokes vector   is completely sufficient.  

The purpose of this work is to derive an evolution 

equation for the full four-component Stokes vector 

directly from the QIA. The obtained Stokes vector 

equation generalizes the previous results for refractionless 

and nonadsorbing media. The paper is organized as 

follows. At the beginning, basic QIA equations are 
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presented. Next, equations for the four-component Stokes 

vector are derived from the QIA for a weakly anisotropic 

medium of a general type. Then, a general theory is 

applied for Stokes-vector evolution in weakly anisotropic 

collisional plasma, such ionosphere, laboratory or 

tokamak plasma with parameters typical for modern 

tokamak machines. 

The theory of electromagnetic wave propagation in 

weakly anisotropic media was developed in [3] in the 

form of a quasi-isotropic approximation of the geometric 

optics method. A short outline of the QIA is presented in 

the books [4-5] and in the review paper [6]. The quasi-

isotropic approximation of geometrical optics is efficient 

for describing the evolution of electromagnetic wave 

components in a 3D weakly inhomogeneous weakly 

anisotropic medium. The dielectric permittivity     of a 

weakly anisotropic medium could be split into two parts: 

a large isotropic component      , where     is the unit 

vector, and an anisotropic component    , which is small 

as compared with the isotropic part    :            : 

  

              , (1) 

 

The quantity                  is an "anisotropic" 

small addition to the traditional small parameter of 

geometrical optics           , where    is the 

wave number and   is the characteristic scale of an 

inhomogeneous medium. Thy QIA comes from the 

solution of Maxwell’s equations by asymptotic expansion 

of the electromagnetic wave field   with respect to the 

combined small parameter              . In the 

lowest order of the QIA, the monochromatic 

electromagnetic wave field   has the form of a transverse 

wave: 

 

                                 . (2) 

In the frame of the QIA theory a weak anisotropy 

influences the polarization vector             rather 

than the eikonal Ψ and the wave amplitude  : the latter 

obey the same equations as in the isotropic medium. The 

polarization vector components    and    obey the QIA 
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coupled equations, which can be presented in the form 

[6]: 

 

  
  
   

 
    

    
              

  
   

 
    

    
              

  (3) 

 

where derivatives are calculated over    – the elementary 

arc length of the ray.  

 

The four-component Stokes vector   is defined by [9]: 

 

    

  
  
  
  

  

 
 
 
 
 
    

      
 

    
      

 

        
  

        
   

 
 
 
 

 

 
 
 
 
 

    
      

 

    
      

 

    
    

   

       
    

     
 
 
 
 

. (4) 

 

To obtain the evolution equation of the Stokes vector in a 

weakly anisotropic medium, the derivative of (4) has to 

be calculated with appropriate replacements of   
  and   

  

from equation 3. For example, for component    such a 

calculation has the form: 

 

   
       

      
  

 
   

   
      

        
      

     

 

 
    

 
 
         

         
     

     
     

     
   

 
 

 
    

 
 
         

         
     

     
     

     
    

   
 
    

 
 

          
      

          
      

  

 21+ 12      + 12+ 21      .   (5) 

 

For further calculations it is convenient to introduce four- 

component complex vector  : 

 

    

  

  

  

  

  

 
 
 
 
 
 
   

 
    

 
 

          

 

 
    

 
 

          

 

 
    

 
 

          

  

 
    

 
 

           
 
 
 
 
 
 

. (6) 

 

Using Eqs. (4) and (6), it is possible to rewrite (5) in the 

form: 

 

   
                                        

 (7) 

 

The other    vector components are calculated in a similar 

way. Finally, the equation for the evolution of the Stokes 

vector can be written in the matrix form:  

 

       

 
 
 
 
      

       

       

       

       

      

      

       

       

       

      

      

       

      

       

       
 
 
 

  , (7) 

 

where   is the Mueller matrix for a weakly anisotropic 

inhomogeneous medium and can be presented as a sum of 

three terms:           . The first one, the 

attenuation component,  

 

     

      

 
 
 

 
      

 
 

 
 

      

 

 
 
 

      

    (8) 

 

describes isotropic attenuation common for all 

components of the Stokes vector. The second one, the 

dichroic term: 

 

     

 
       

       

       

       
 
 
 

       
 
 
 

       

 
 
 

   (9) 

 

corresponds to the attenuation responsible for dichroism, 

that is, for selective attenuation of normal modes. The last 

term, 

 

     

 
 
 
 

 
 

      

       

 
       

 
      

 
      

       
 

    (10) 

  

describes birefringence. Therefore real and imaginary 

parts of vector   correspond to hermitian and 

antihermitian parts of a permittivity tensor and are 

involving, respectively, isotropic attenuation or dichroism 

and birefringence. Please note that the quantity        
does not appear in (7), which means that the total phase of 

the wave is lost in the Stokes vector evolution calculation. 

Only the phase difference between polarization modes 

can be retrieved from       , where        . 

 

As an example, we will apply the obtained equations to 

the analysis of the Stokes vector evolution in 

nonrelativistic plasma in external magnetic field   with 

wave absorption due only to electron collisions (described 

by constant electron collision frequency   ) and without a 
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kinetic effect, such as occurs for ionosphere, laboratory or 

tokamak plasma. For a sufficient high electromagnetic 

wave frequency   such  plasma is weakly anisotropic and 

the components of the permittivity tenor transverse to the 

ray propagating in the   direction have the form [10]: 

 

 

 
 
 
 

 
 
       

             
  

                 

    
                    

                 

    
                     

                 

      
             

  

                 

  (11) 

 

where                                    

        
 
          

   and        are the 

standard parameters of plasma with density   . Weak 

anisotropy requires      or    . Note that only one 

of the parameters   or   has to be small, while the other 

one can be comparable with unity. Assuming         
as the isotropic part of the permittivity tensor (plasma 

without magnetic field and absorption), so from (1) 

                  , and weak dissipation in the 

plasma      , the components of the Mueller matrix   

from (6) and (11) in the first approximation of   are: 

 

      

  
 

 
   

                
    

          

       
  

        
 

 
   

 
 
      

    
  

   

       
 

    

   

    
  

        
 

 
   

 
 
        

   

       
     

   

    
  

        
 

 
   

 
 
       

 

       
     

 

    
  

 

It is worth noting that in such a medium both isotropic 

and anisotropic attenuation are proportional to the 

collision frequency    and inversely proportional to the 

electromagnetic wave frequency     
 

       
 

 
   

 
 
      

    
  

 

    
                   

    
     

       
 

 
   

 
 
        

 

    
                        

       
 

 
   

 
 

       
 

    
                    

where coefficients   , traditionally used in plasma 

polarimetry [8], correspond to the Cotton-Mouton effects 

            and to the Faraday phenomenon      
[11,12]. In a nondissipative medium,          and (7) 

reduce to the standard Stokes vector precession equation 

[8]: 

 

       . (12) 

 

To summarize, we have derived an evolution equation 

for the full four-component Stokes vector of the 

electromagnetic wave propagating in a weakly 

anisotropic, smoothly inhomogeneous medium, with no 

negligible absorption, as a function of permittivity tensor 

components. As a starting point we used the equations of 

a quasi-isotropic approximation (QIA), which follow in a 

consequent asymptotic way from Maxwell’s equations. 

Obtained equation 7 allows to investigate the polarization 

state evolution in any medium with a sufficiently small 

combined parameter  , like different types of plasma 

(ionospheric, astrophysical, laboratory or tokamak 

plasma) or fibers.   
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