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Abstract—In this work, we use the generalized nonlinear 

Schrödinger equation to study the propagation of ultrashort optical 

pulses in the presence of self-phase modulation, nonlinear absorption 

and third-order dispersion. The combined effect of the third-order 

dispersion and nonlinear absorption on amplitude, center location and 

phase of the soliton has been investigated by an approximate analytical 

method. 
 

 

Solitons are a fundamental phenomenon in nonlinear 

dynamics and have attracted the attention of researchers 

from physical and mathematical sciences. Optical solitons 

have been the subject of intensive theoretical and 

experimental studies for many years. Solitons were 

studied in nonlinear optics, plasma physics, particle 

physics, biological systems and Bose-Einstein-

condensation. In nonlinear optics, these special types of 

optical wave packets appearing as the result of interplay 

between dispersion and nonlinearity are of special interest 

because of their important applications in 

telecommunications [1-3] and optical data processing [4-

5]. 

In most cases, the absorption is assumed to be linear. On 

the other hand, for special optical fibers, such as fiber 

optics and semiconductors doped lead-silica optical fibers 

[6-10], the influence of nonlinear absorption must be 

taken into account. The effects of nonlinear absorption on 

soliton propagation have been presented in [3]. However, 

the combined effect of the third-order dispersion and 

nonlinear absorption on soliton propagation in the optical 

fiber has not been adequately studied. It is the subject of 

our recent paper. 

The nonlinear Schrödinger equation, which can be written 

as: 
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has been shown to govern the propagation of light in a 

optical fiber with linear and nonlinear absorption [1,3]. In 

this equation, A is the slowly varying envelope of an 

optical field along the optical fiber, 2 and β3 are the 

second and third order dispersion coefficient, vg is the 

group velocity of the pulse and α0, α2 are the linear and 

nonlinear absorption coefficients respectively. The 

nonlinear parameter  accounts for the third order 

nonlinear polarization and is determined by the 

expression
0 2 eff/k n A  , where k0 is the wavenumber, n2  

- the nonlinear refractive index and the parameter Aeff  is 

known as the effective core area of the optical fiber.  

Applying the transformation  t’ = t – z/ vg, Eq.(1) is re-

written as follows: 
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In a dimensionless form with rescaled variables 
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the NLS equation reads 
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 (5) 

Here we have chosen sgn(2) = -1, which corresponds to 

the anomalous GVD region, where bright solitons can 

exist. LD is the dispersion length, T0 is the width of the 

incident pulse.   
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When the terms 
2
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considered as small perturbations, then Eq. (2) is rewritten 

as: 
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is a small perturbation that can affect *,u u  and their 

derivatives. In the presence of a small perturbation, the 

solution of the NLS equation can be written as: 

             , sech expu Z T Z Z T q Z i Z i Z T         
.  

Here  Z  is the normalized amplitude of the soliton, and 

 Z  represents the frequency of the soliton,  Z  - the 

time-independent phase shift.,  q Z is the location of the 

soliton center. According to the perturbation method [1-

3], the evolution of soliton parameters is determined 

according to the following equations: 
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The solutions of the above equations are: 

     
1/2

22
0 0 1 1

1

2
1 1 exp 4 exp 2 ,

3
Z Z Z  



 
          

(12) 

  0,Z                            (13) 

 

 

0 0

2 22
0 0 1 3

2 1

3 2
3 ln 1 1 exp 4 ,

8 3

q Z Z q

Z Z



  

   

   
             

 (14) 

   

 

2 22
0 1 0

2 1

2 32
0 1 0 3 0

2 1

3 2 1
ln 1 1 exp 4

16 3 2

9 2
ln 1 1 exp 4 ,

8 3

Z Z Z

Z Z

  

   

 
          

   
              

(15) 

where 
0 0 0 0, , ,q    are the initial values of soliton 

amplitude, velocity, center location and time-independent 

phase, respectively.  

From Eqs. (14-15), we see that the third-order dispersion 

only affects the phase and position of the soliton. Figure 1 

shows the center location of the soliton as a function of 

the normalized propagation distance Z for various values 

of 3.  From this figure we see that the magnitude of the 

parameter q is proportional to the magnitude of the third-

order dispersion coefficient. 

However, in the case of the positive 3 (blue line), the 

location of the soliton center is moved to the positive of 

the axis. When 3 is negative, it is moved in the opposite 

direction. These results coincide with the results obtained 

by numerical methods in [1, 11]. 

 
Fig. 1. The center location of the soliton as a function of the 

normalized propagation distance Z for various values of 3. The initial 

condition u(T,0) = sechT and the parameters used are 
0 1   

1 0.02  . 

 

The influence of nonlinear absorption on the parameter 

q(Z) is shown in Fig. 2. We see that the magnitude of the 

parameter q(Z) is inversely proportional to the  nonlinear 

absorption coefficient. So, in the case of the positive 3, 

the influence of third-order dispersion and nonlinear 

absorption on the parameter q is opposite 

 
Fig. 2. The center location of the soliton as a function of the 

normalized propagation distance Z for various values of 2. The initial 

condition u(T,0) = sechT and the parameters used are 
0 1   

1 0.02  . 

 

In the presence of fiber loss, pulse amplitude 

decreases when the propagation distance Z increases [see 

Eq. (12)]. One can avoid this limitation by compensating 

fiber loss by means of continuous amplification. In this 

case, Eq. (8) is rewritten as: 
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where / 2DG gL , with g being the gain per unit length. 

Thus the amplitude of the soliton is constant if 

/ 0d dZ  , that is, the amplification factor must satisfy 

the following condition: 
2

1 22 / 3,G      

in fact, the amplification factor is usually chosen to satisfy 

the condition 2

1 2 02 / 3G     with 
0  being the initial 

value of soliton amplitude.  

 

In this work we have investigated the propagation of 

optical solitons in the presence of both nonlinear 

absorption and third-order dispersion. We have derived 

the analytical formulas of soliton parameters describing 

soliton propagation in optical fibers. Based on these 

results, the combined effect of third-order dispersion and 

nonlinear absorption on amplitude, center location and 

phase of the soliton has been adequately studied. 
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