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Abstract—We propose a variation of the Jaynes-Cummings Model 

(JCM), which consists of a Two-Level Atom (TLA) within a cross 

cavity configuration. This new geometry is a suitable tool to understand 

the origin of new QED features that the original JCM does not reveal, 

showing revivals in cases where they are not expected to appear. 

 

 

The Jaynes-Cummings Model (JCM) describes the 

interaction between matter and a fully quantized field in a 

perfect one-dimensional cavity. The JCM has been the 

workhorse of Cavity Quantum Electrodynamics (CQED) 

for a number of decades [1]. Many authors have 

investigated several JCM generalizations to take into 

account more complex physical processes but not new 

QED features. The original one-dimensional arrangement 

has been studied in different contexts with interesting 

contributions [2-5]. Its interaction with more QED fields 

brought a wide variety of new cases, more complex 

atomic systems and more realistic experimental 

descriptions have given a thorough analysis of the model. 

That includes N-TLA and multimode cavities, in 

particular the driven and the two-mode JCM.  However, 

they have not introduced a new distinctive QED feature. 

The JCM has been under continuous study for the last 

decades and has proved to be an ideal testing ground of 

fundamental concepts because it is one of the few fully 

soluble models in quantum optics. Despite the model 

simplicity, it shows the QED cavity field complexity 

through atomic interaction. Since then, other essential 

QED behaviors have been unveiled in other quite simple 

systems, such as a beam splitter, that suggest that new 

geometries would unveil a new QED nature. That will be 

discussed elsewhere [6]. 

Our recent work has been on a variation of the original 

one-dimensional problem which, however, allowed for an 

additional quantum feature. It consists of a TLA, with a 

real atomic dipole d=dr(σ++σ−), placed between two 

perpendicular cavities, oriented along the y  and x  

directions and fields on the x and y directions, which we 

will refer as X-cavity for short. It is relevant to inquire on 

the effects that our proposal has on the original JCM 

dynamics, in particular, the second arm effect. For 
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instance, we study the revivals and photon number 

dynamics, na = a
†
a and nb = b

†
b, on the X-cavity arms. 

The field in this configuration is described by: 

    † † ,x x y yE a a E b b   E e e   (1) 

where Ex and Ey are the fields propagating along the y   

and x axis respectively, both with linear polarizations 

described by the unit vectors ex and ey, respectively. The 

fields operators a and b obey the standard commutation 

rules of Bosonic operators [a, a
†
]=1 and [b, b

†
]=1 and 

there is no interaction among them [a, b]=0. 

The Hamiltonian that describes this physical system, 

under the Rotating Wave Approximation (RWA), is: 
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Here ω0 is the atomic transition frequency while ωy and ωx 

denote the modes frequency along the x and y directions 

respectively. The respective TLA coupling strength with 

the fields in the x and y directions is given by gx and gy 

where gi =Eiei·dr /ħ with i=x, y. Furthermore, the atomic 

operators are given by σ+=|eg|, σ−=|ge|, and 

σz=|ee|−|gg|, where |g denotes the ground state and |e 

is the excited state.  

It is convenient to formulate the problem in terms of the 

mean cavities frequency ῶ=(ωx+ωy)/2, the cavities 

asymmetry δ=(ωx−ωy)/2 and the atomic detuning Δ=ω0−ῶ 

with respect to ῶ. The overall strength of the atom-X-

cavity fields can be parameterized in terms of the effective 

coupling geff =√(gx
2
+gy

2
) and a convenient dynamical 

parameterization is obtained from the ratio 

Eyey·dr/(Exex·dr)=tanθ/2=gy/gx that defines the dynamical 

unitary transformation: 
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in terms of the strength of the coupling between the TLA 

and the fields:  
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The new field operators obey the commutation rules 

[A, A
†
]=1, [B, B

†
]=1 and [A, B]=0. Moreover, this 

transformation leaves the total photons number  nT =a
†
a + 

b
†
b=A

†
A + B

†
B= na + nb= nA + nB   unchanged. 

The transformation given in the Eq.(3) not only defines 

new field operators but also new states. In terms of the 

new field operators, and by assuming symmetric cavities 

δ=0, the Hamiltonian acquires the mathematical structure 

of the JCM Hamiltonian: 
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Clearly, the Hamiltonian given in Eq. (5) resembles the 

dynamics of a TLA interacting with a pseudo mode of the 

field described by A  and that of a field B  that has no 

interaction with the system. The structure of the JCM 

allows to identify the following motion constants [7]: 
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Let us consider the initial state of the field prepared in a 

particular and convenient state in order to point out the 

second cavity arm effects on the JCM, in particular in the 

strong field JCM limit. Indeed, the coherent state is the 

most classical QED state. However, its atomic inversion is 

not our most familiar semiclassical picture, as shown in 

Figs. 1 and 2 of [8], and its revivals and short time decay 

have become CQED landmarks [9]. In spite of that, the 

Fock state JCM atomic inversion still resembles our 

semiclassical expectations [10]: 
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and it will be our choice because of its pure oscillatory 

behavior. In Eq. (7), n  is the Fock state eigenvalue, m=1 

are the 
z  eigenvalues and 

k  is the JCM Rabi 

frequency. More complex states include a photon 

distribution superposition. In particular, for a coherent 

state the on-resonance revival time is TR
C
=2π√(ñ)/g, 

where ñ is the average photon number. In the X-cavity 

JCM, k  depends on the effective coupling coefficient 

and the A photon number but the photon distribution 

changes according to Eq. (3). Let us choose the horizontal 

cavity field in a M photons Fock state and the vertical 

field prepared in a vacuum state; then the initial state, in 

the new representation, is given by: 
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where the double ket denotes a Fock state in the new 

representation A
†
AB

†
B|M, N =MN|M, N . The effects of 

a binomial distribution field have been reported in the 

frame of the JCM [11] but not on this quantum 

interpretation. For the JCM limit, let’s consider 

sin(θ/2)→0 and we recover the Fock state in Eq. (8). 

Another interesting limit is the very large photon number 

while keeping the Rabi frequency constant. When the 

atomic dipole is weakly coupled to the horizontal cavity 

gx<<gy, in such a way that the quantity μθ=Mcos
2
(θ/2) 

remains constant, then the atomic inversion is given by: 
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where the Rabi’s frequency is given by 

Ωk
2
=Δ

2 
+ 4geff

2
(k +1) as in Eq. (7). It is well known that 

the Eq. (9) sum produces the collapses and revivals [8-9]. 

Beyond that limit, we show in Fig. (1) the on-resonance 

(Δ=0) X-cavity Atomic inversion collapses and revivals, 

for M=25 photons, in two specific cases gx=gy [geff 

=√(2) gx]   and 2gx=gy [geff =√(5) gx] in units of a coherent 

state revival time TR
Coh

=2π√(ñT)/geff. The role of geff is 

quite clear, both in the revivals and the short time decay, 

as in their binomial photon distribution tendency to a 

Poisson distribution. 

 

 
Fig. 1. X-cavity Atomic inversion collapses and revivals σz(t), on 

resonance (Δ=0), for M=25 and a) gx=gy [geff =√(2) gx] and b) 2gx=gy 

[geff =√(5) gx]. 
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In order to understand the revivals dynamics of a cross 

cavity JCM, one needs to know not only the time 

evolution of the atomic inversion but also the photon 

number in each arm na=a
†
a and nb=b

†
b. This coupled 

behavior of the cavities photons can be understood by 

writing the number operators na and nb in terms of the new 

operators defined in the Eq. (3): 

 

 

 

2 2† † † †

2

†

† † † †2†

cos sin cos sin ,
2 2 2 2

sin sin cos cos .
2 2 2 2

a a A A AB BA B B

b b A A AB BA B B

  
   

   



   

 

  (10) 

The first term in Eq. (10) provides the revival 

distribution because A
†
A is connected to the atomic 

dynamics through the constant NA. The second term gives 

the coupling between the cavities in terms of the pseudo 

modes A and B and the last term is proportional to the 

constant nB. It is quite interesting to notice the average 

photon number behavior in each arm, which reminds us of 

a mode coupled system and therein the distinctive revival 

periodicity, see Fig. 2. Such photon behaviour shows a 

QED dephasing decaying amplitude to a decoupling 

cavity photon number limit in each arm. However, we 

shall not expect a long term steady state due to the 

interference between the broadening revivals that define 

the asymptotic behavior [6].  

   
 

Fig. 2. X-cavity photon Coupling by the on-resonance TLA shown 

through the average of the photon number operators na=a†a (red line) 

and nb=b†b (blue line). The system is prepared as in Fig. 1. 

 

The addition of a second cavity is the origin of all those 

new QED features where collapses and revivals were 

obtained; even in those states where they are unexpected 

such as TLA in Fock state cavities. What is more, the 

TLA behaves as a coupler of their cavities modes with a 

QED dephasing decay and a revival period, therefore as a 

function of the photon number. The analogy with a 

dynamical quantum lossless beam splitter is shown in the 

large photon number limit. 
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