
doi: 10.4302/plp.2013.2.15 PHOTONICS LETTERS OF POLAND, VOL. 5 (2), 78-80 (2013) 

http://www.photonics.pl/PLP © 2013 Photonics Society of Poland 

78 

Abstract—The method of paraxial complex geometrical optics 

(PCGO) is presented, which describes Gaussian beam (GB) diffraction 

and self-focusing in smoothly inhomogeneous and nonlinear media of 

cylindrical symmetry. PCGO reduces the problem of Gaussian beam 

diffraction in nonlinear and inhomogeneous media to the system of the 

first order ordinary differential equations for the complex curvature of 

the wave front and for GB amplitude, which can be readily solved both 

analytically and numerically. The power of the PCGO method is 

exemplified by GB evolution in a logarithmically saturable medium 

with a defocusing refractive profile. The solutions obtained by the 

PCGO method are compared with numerical results of a Nonlinear 

Schrodinger Equation by the beam propagation method (BPM). 

 

 Complex geometrical optics (CGO) has two equivalent 

forms: the ray-based form, which deals with complex rays 

[1-6], that is with trajectories in a complex space, and the 

eikonal-based form, which uses complex eikonal instead 

of complex rays [6,7]. A surprising feature of CGO is its 

ability to describe Gaussian beam (GB) diffraction in both 

ray-based and eikonal-based approaches. Recently, 

eikonal-based CGO method has been applied to describe 

GB evolution in inhomogeneous media [8,9], nonlinear 

inhomogeneous fibres [10] and graded-index fibres [11]. 

It is shown in [11] that eikonal-based CGO approach 

demonstrates high ability to describe GB evolution in 

graded-index optical fibres reducing hundred times the 

time of numerical calculations at comparable accuracy 

with a Crank-Nicolson scheme in the Beam Propagation 

Method (BPM).  

This paper describes the advantages of the eikonal-

based form of PCGO for the description of Gaussian 

beam diffraction and self-focusing in a logarithmically 

saturable medium with defocusing refraction. This paper 

generalizes the results of previous papers [12-14], where 

the authors considered mainly light beam propagation in 

nonlinear saturable media without any contribution of the 

linear refraction. Although media with logarithmic 

nonlinearity have not been encountered in nonlinear 

optics, it has been argued that “accessible” nonlinearities 

of various forms (including a logarithmic one) can 

“provide a valuable insight and still maintain the 

characteristic features of the underlying physical process” 

[14].  
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 For an axially symmetric wave beam in an axially 

symmetric nonlinear medium, the PCGO method suggests 

a solution of the form 
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The real and imaginary parts of the complex curvature  

IR iBBB   determine the real curvature   of the wave 

front and the beam width w  correspondingly: 
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where 
00 /2 k  and

0 is the wavelength of the beam 

in vacuum. The PCGO method deals with the Riccati 

equation for complex curvature B: 
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equation for GB complex amplitude 
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and the second order equation for GB width evolution,  
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Parameter   for axially symmetric medium equals:  
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Above PCGO equations are derived in paper [10]. 

        The PCGO method is applied in this paper for GB 

propagation in inhomogeneous defocusing and a 

cylindrically symmetric nonlinear medium with a 

permittivity profile of the form 
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where 
*uuI   is the beam intensity, r  is the distance 

from the fibre axis z, g  is the graded-index coefficient 

and satI  is the characteristic saturation intensity. The 

logarithmic nonlinear dependence presented in Eq. (7) is 

approximation of the saturable model )/1ln( satII for 

satII  . For the refractive index (7), the Riccati 

equation (3) takes the form 
 

g
w

B
dz

dB NL 
2

2

0


 ,                  (8) 

 

and equation for GB width evolution (5) is in the form:  
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Introducing next dimensionless GB width 0/ wwf  , 

where )0(0 ww   denotes the initial beam width, one 

obtains the equation: 
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Introducing normalized variables R, Z and normalized 

material parameters G  and  N: 
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Eq. (10) takes the form 
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Demanding next for the beam to propagate as a stationary 

mode in a logarithmically nonlinear medium with 

defocusing refraction we put f = 1 in Eq. (12) obtaining 

the condition: 

1 NG .                            (13) 

Let us compare PCGO results with numerical and 

analytical solutions of a Nonlinear Schrodinger Equation 

(NLS). A nonlinear parabolic equation for the case of 

axially symmetric beam in axially symmetric medium has 

the form: 
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where Y(|u|
2
) is the  nonlinear function. In a 

logarithmically saturable medium this function for 
2| |  satu I  is 
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Taking into account Eq. (15), the nonlinear parabolic 

equation takes the form 
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For Y given by Eq. (15,) we search for the solutions of 

Eq. (16) in the form 
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wh gives Nonlinear Schrodinger Equation (NLS) for the 

complex envelope ( , )  R Z  in the form: 
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One can prove that NLS in Eq. (18) possesses an 

analytical solution in the form of a Gaussian beam: 
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and provided that parameter f satisfies Eq. (12). 

One can notice that the equations for GB width evolution 

obtained by the PCGO method and the NLS method are 

identical and are presented in Eq. (12). This way the 

PCGO method provides exact solutions of NLS for 

logarithmically saturable nonlinear media modeled by Eq. 

(7). This is illustrated in Fig. 1 and Fig. 2 where PCGO 

solutions are compared with numerical results of NLS 

obtained by BPM for the nonlinear parameter N = 0.4 π
2
 = 

3.94784. 
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Fig. 1. Comparison of PCGO oscillatory solution with numerical results 

of BPM for 0 10w    and 310NL

 .
 

 

 
Fig. 2. Comparison of PCGO diffractional solution with numerical 

results of BPM for 0 10w    and 310NL

 .
 

 

In Fig. 3, at the phase plane, we present the possible types 

of solutions of Eq. (12) for GB width evolution  f . The 

phase curves f '(f) are drawn for the previously assumed 

nonlinear parameter N. The stationary solution of Eq. (12) 

obtained for G satisfying the condition in Eq. (13) is given 

by the point lying at the center of figure f = 1, f ' = 0. One 

can notice that this solution is unstable because the small 

fluctuation δf <0 causes appearance of oscillations of GB 

width f  between fmax = 1 and certain fmin(N) (for N = 0.4 π
2
 

we have fmin = 0.44782). On the other hand, the small 

fluctuation δf >0 leads to diffraction, where the GB width 

f increases to infinity. For the graded-index coefficient 

G<Gst = N1 we obtain stable oscillations, for which 

diffraction widening appears when initial width f(0) is 

sufficiently greater. Similarly, G>Gst causes diffraction of 

GB. However, the narrower beams could oscillate in such 

a medium (closed red curve in the left side of Fig. (3)). 

 
 

Fig. 3. PCGO and NLS solutions in the form of GB width f evolution 

illustrated on the phase plane and obtained for a nonlinear saturable 

medium with permittivity in Eq. (7) . 
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