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Abstract—We identify a family set of fractional power, annularly 

distributed phase-masks for generating axial irradiance bursts. We show 

that by changing the phase delay, for certain fractional power, one can 

generate either short tail or long tail axial irradiance bursts. To this end, 

we discuss the use of a pair of angularly modulated, Alvarez-Lohmann 

lens.  

 

 

For optical alignment, micro machining and confocal 

scanning it is desirable to shape the point spread function 

of an optical system. Specifically, for engineering the 

axial irradiance distribution it is convenient to exploit the 

McCutchen theorem, which relates through a Fourier 

transformation the axial complex amplitude distribution 

with the angular average of the generalized pupil function 

[1-12]. 

Here we apply the McCutchen theorem for identifying a 

family set of radial phase masks which generate axial 

irradiance distributions that generate axial irradiance 

bursts. We show that, for a fixed fractional power, one can 

control the axial irradiance burst by using an angularly 

modulated Alvarez-Lohmann lens [13-19]. 

As part of our proposal, we revisit briefly the definition 

of the Strehl ratio vs. focus errors. Along our discussion, 

we present a new pair of an Alvarez-Lohmann lens. Then, 

we identify certain annularly distributed phase masks. 

Finally, we show numerical evaluations of either short tail 

axial bursts or long tail axial bursts. 

In Fig. 1 we show the schematics of the optical system 

under discussion. The complex amplitude transmittance of 

the radial phase mask is 
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In Eq. (1), we use Greek letters for denoting the polar 

coordinates in the pupil aperture (ρ, ϕ). The letter ρ is the 

radial spatial frequency whose maximum value is the cut-

off spatial frequency Ω. Consequently, the circ function 

represents the circular pupil aperture with radius Ω. The 

letter ϕ is the polar angle on the circular pupil aperture. 

The lower case letter "a" denotes the optical path 

difference; and the function F(ρ) is a real annularly 

distributed function, to be specified in what follows. 

 

Fig. 1. Schematics of the telecentric optical setup. 

Now, following the proposal of the Alvarez-Lohmann 

lens, we apply Eq. (1) to form the annularly distributed 

pair: 
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In Eq. (2) the Greek letter β denotes the value of the in-

plane rotation angle, which is introduced between the 

elements of the pair. By substituting Eq. (1) in Eq. (2), we 

have that 
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It is apparent from Eq. (3) that the value of β controls 

the total optical path difference of the annularly 

distributed pair. Within the paraxial regime, we recognize 

that the generalized pupil is 
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In Eq. (4) the value of z specifies the axial distance 

between the in-focus plane and the detection plane; as 
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depicted in Fig. 1. The complex amplitude distribution of 

the amplitude point spread function is 
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We set r=0 in Eq. (5) and we use the following 

variables: 
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In Eq. (6) the letter W denotes the focus error coefficient 

in units of wavelength. The normalized version of the 

axial irradiance distribution is 
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The function s(W) is also known as the Strehl ratio vs. 

focus error. From Eqs. (6)-(7) we obtain:  
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Next, for the function G(ζ) in Eq. (8), we propose to 

employ a generalized version of the pupil masks in 

references [20, 21]; namely 

 

 ( ) sgn( ) tG     . (9) 

 

In Eq. (9) the sign function is denoted as sgn(ζ). And the 

Latin letter "t" describes a positive real number, which 

represents the fractional power of the phase delay. In 

Fig. 2 we display the function G(ζ) for 0 ≤ t ≤ 15. 

 

 
 

Fig. 2. Phase variation G(ζ) for fractional power wavefronts. 

Next, we employ the definitions in Eq. (6) and Eq. (8) for 

identifying the annularly distributed phase variations 
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One member of this family is already reported in 

reference [23]. In Fig. 3, we depict the function F(ρ) for 

0 ≤ t ≤ 15. 

 

 
 

Fig. 3. Annularly distributed phase variation F(ρ). 

For numerically evaluating the Strehl ratio in Eq. (8), we 

perform a fast Fourier transform, as described in reference 

[22]. Our program uses 1024 points and is written in C++ 

language. The program includes a set of Graphic User 

Interface (GUI) elements for manipulating the parameters 

"a" and "t". We find numerically that by setting the 

fractional power t=2.81±0.34 and for an optical path 

difference a=0.786±0.018, the axial irradiance 

distribution exhibits a short tail burst; as depicted in Fig. 

4. 
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Fig. 4. Strehl ratio for an axial short tail burst, if t=3. 

It is apparent from Fig. 4 that for the zero optical path 

difference, a=0, the axial irradiance distribution is the 

well-known irradiance distribution 
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However, as the optical path difference approaches a=0.8 

the axial irradiance distribution becomes asymmetrical. 

There is a short tail, axial burst. We note that it is a good 

choice to set t=3, as in reference [23]. Furthermore, from 

Eq. (3), we recognize that it is physically feasible to 

achieve the optical path difference requirement, aβ=0.8. 

 

 
 

Fig. 5. Strehl ratio for an axial long tail burst, if t=6. 

Finally, we find numerically that by setting the fractional 

power t=7.5±2.5 and for an optical path difference 

a=27.5±2.5, the axial irradiance distribution exhibits a 

long tail burst; as is depicted in Fig. 5. In this later graph 

the range of W is larger than the one in Fig. 4. Of course, 

as before, the axial burst disappear for a=0. 

 

Summarizing, we have identified a family set of annularly 

distributed phase masks that generate axial irradiance 

bursts. We have noted that some members of the family 

set are able to generate a short tail burst; while another set 

of members have long tails. We have presented the use of 

two angular phase masks for controlling an axial 

irradiance burst.  
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