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Abstract—We theoretically and experimentally investigate the 
angular structure of polarization of light transmitted through  planar 
nematic and cholesteric liquid crystal (LC) cells by analyzing the 
polarization state as a function of the incidence angles and the 
polarization characteristics of the incident wave (the ellipticity εinc and 
the azimuth of polarization φinc. The geometry of polarization-resolved 
conoscopic (angular) patterns emerging after the planar nematic and 
cholesteric LC cells is described in terms of the polarization singularities 
such as C-points (points of circular polarization) and L-lines (lines of 
linear polarization). The characteristic feature of polarization-resolved 
conoscopic patterns under consideration is that the conditions of C-point 
formation are very sensitive to polarization parameters of the incident 
wave. 
 

 

Liquid crystals are anisotropic materials. It is well known 
that the anisotropy of LCs is determined by their 
orientational structure, which is sensitive to external 
fields and boundary conditions [1]. The optical properties 
of LCs determine their numerous applications as 
materials with quite readily controllable anisotropy [2, 3] 
and play an important role in solving such problems as 
the characterization (i.e., determination of parameters) of 
the orientation structure (alignment) of LCs. 
 Conoscopy is widely used as an experimental 
technique to characterize orientational structures in 
nematic LC (NLC) cells [4]. But the use of crossed 
polarizers leads to a loss of information about the state of 
polarization of light transmitted through the LC cell. In 
principle, this information may be useful in developing 
new devices and techniques for improving the optical 
characterization of anisotropic materials. 
 In our recent papers [5, 6] we have shown that the 
polarization structure of conoscopic images can be 
represented by two-dimensional distributions of the 
Stokes parameters [7]. Such distributions, termed the 
polarization-resolved conoscopic patterns, were 
described in terms of polarization singularities: C-point 
(point of circular polarization) and L-lines (lines of linear 
polarization) [8]. In polarization distributions of random 
light fields, such singularities are known to be 
fundamentally important as stable topological defects [9]. 
 The experimental and theoretical results obtained in [5, 
6] give a complete description of conoscopic patterns in 
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the case of homeotropically oriented nematic liquid 
crystals (NLCs) in which the orientation structure (with 
the NLC director aligned in the direction of normal to the 
substrate plane) is characterized by cylindrical symmetry 
with the axis of rotation perpendicular to the cell plane (z- 
axis). In particular, we have studied in detail the 
bifurcation behavior of C-points during transformations 
of the polarization-resolved conoscopic patterns induced 
by a change in the polarization parameters (polarization 
azimuth and ellipticity) of the incident wave. 
 In studying the polarization distributions of light in 
other LC orientation structures, one may naturally expect 
the manifestation of effects that are directly related to 
breaking the cylindrical symmetry of the homeotropic 
configuration.  In order to study these effects, we 
concentrate on a planar oriented LC layer as another 
important limiting case with the LC director n 
(determining the orientation of the optical axis) lies in the 
LC cell plane (xy plane) and is expressed as follows: 

cos sin ,
x y d d

n n     n x y x y          (1) 

where
d

 is the azimuthal angle of the director. In addition 

to the polarization distributions of light in conoscopic 

patterns of a homogeneous NLC pattern with 
0d

   , 

we also consider the case of cholesteric LCs with the 
helicoidal orientation structure described by Eq. (1) with 

0d
qz    , where 2 /q P  and P are the 

wavenumber and the pitch of the cholesteric helix, 
respectively [1]. In this letter, our task is to determine 
conditions of the formation of C-points in polarization 
distributions of this type. 
 Omitting mathematical details on deriving the exact 
solution to the problem of light transmission through an 
NLC cell, below we present the final analytical 
expression for the transmission matrix T (given by Eq. 
(2)) of a planar NLC cell in the general case of oblique 
incidence. In order to calculate the transmission matrix, 
we use the analytical results obtained in [5, 6], where the 
solution of the corresponding boundary-value problem 
was expressed via the operator of evolution of Maxwell’s 
equations in the matrix form [10].  It should be noted that, 
for cholesteric LC (CLC) cells, similar analytical 
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expressions can be written only in the case of normally 
incident light whereas, in the case of oblique incidence, 
the solution cannot be obtained in the closed form and the 
evolution operator has to be determined using numerical 
methods.  
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k c   is the 

wavenumber in vacuum and d is the thickness of an LC 

cell;   /
a e o o

u n n n   is the parameter of anisotropy of 

the NLC; 
e

n , 
o
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n is the refractive indexes of LC and 

surround medium; µ and 
m

  is the magnetic permeability 

LC and medium; 
inc
 is the incidence angle.  
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are block-matrices of the corresponding eigenvectors. 
Analogous matrices of eigenvectors for the external 
medium are written as follows: 

   / ,1 , , .
m m m m m

diag q n diag n q  
m m

E H  

Matrix T calculated in the plane of incidence with the 

azimuthal angle 0
inc

   determines the transmission 

matrix T for conoscopic patterns in the circular basis set 
as follows [5, 6]: 
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and r is the scaling factor. In the plane of observation of 
the conoscopic pattern,   and   represent the polar 

coordinates which are determined by the angle of 

incidence 
inc
  and the azimuthal angle 

inc
 of the plane of 

incidence.  
 The polarization-resolved conoscopic patterns can now 
be computed as distributions of polarization ellipses in 
the plane of observation. Parameters that define the 

polarization ellipse (polarization azimuth 
p

  and 

ellipticity 
ell
 ) [7] can be calculated by the following  

equations: 

32

1 0

1
arctan , tan arcsin

2
p ell

SS

S S
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where 
0 1 2 3

{ , , , }S S S S  are the Stokes parameters [7] that 

determine the Poincare sphere parameterized by the 

polarization azimuth  0
p

     and the ellipticity 

angle  1 tan 1
p ell

      . 

 Now let us consider the conditions for the formation of 
C-points in polarization-resolved conoscopic patterns. 

Since the transmission matrix  , T  depends on the 

two angles of incidence  ,
inc inc
  , the C-point for the 

given values of these angles appears at certain 
polarization parameters of the incident wave. In order to 
determine these polarization states, which induce the 
formation of C-points, let us solve the inverse problem of 
light transmission. By varying the angles of incidence, we 
obtain a manifold of polarization states of the incident 
wave, which induces at least one C-point in the 
corresponding conoscopic pattern. These states are 
conveniently imaged as points determining a region on 
the Poincare sphere. 
 

a b

c d
 

Fig.1. Polarization states of the incident wave, which induce C-points in 
the polarization-resolved conoscopic patterns, as mapped on the 

Poincare sphere for (a) planar NLC and (b–d) cholesteric LCs with helix 
pitches of P=250, 200, and 100μm, respectively. Bright and dark regions 
correspond to the polarization states inducing right- and left-handed C-

points, respectively (for the planar NLC, these regions coincide). 
Parameters of calculations: LC, E7 (no=1.54; ne=1.72); nm=1.5; LC cell 
thickness, d=100μm; light beam aperture, 30°; φd=0. Direction of the 

polarization azimuth is indicated in Fig. 1a 
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Figure 1a shows the regions of polarization states of 
the incident wave inducing C-points in the polarization-
resolved conoscopic patterns for a planar NLC, as 
mapped on the Poincare sphere, where the polarization 
azimuth varies along the parallels and the ellipticity varies 
along the meridians. The parameters of calculations 
performed using Eq. (2)–(8) are given in the legend to 
Fig. 1. As can be seen from Fig. 1a, the LC with a planar 
orientation exhibits a pronounced dependence of the 
conditions of C-point formation on the azimuthal 
polarization angle of the incident wave. The Poincare 

sphere presented in this figure was calculated for 0
d

  . 

A change in the azimuthal angle 
d

   of the NLC director 

is equivalent to a shift of the polarization azimuth by the 

same value of
d

 , which corresponds to translation of the 

region along the parallel (i.e., rotation around the S3 axis).  
Figure 2 presents the polarization-resolved conoscopic 

patterns for a crystal KDP which demonstrates selectivity 
with respect to the polarization azimuth of the incident 
wave. The C-points in these polarization-resolved 
conoscopic patterns form a regular geometric structure 
which is characterized by alternation of the sign of the 
topological index of C-points. The transformation of this 
structure under variations of the polarization azimuth is 
accompanied by bifurcations of the creation/annihilation 
of C-points and by the repulsion of structurally unstable 
intersections of L-lines.  

 

 
(a) φinc=20

0 
 

(b) φinc = 45
0 

 
(c) φinc=20

0 
 

(d) φinc = 45
0 

 
Fig. 2. Experimentally measured (a, b) [6] and theoretically computed (c, 
d) the polarization-resolved conoscopic patterns. KDP, d=10mm, 
no=1.507, ne=1.467, light beam aperture 300. L-lines are marked by solid 
lines. C-points are marked by a diamond (type Lemon), star (type Star) 
and triangle (type Monstar). 
 

 Figures 1b–1d show regions of the polarization states 
that induce C-points in the polarization-resolved 
conoscopic patterns of a CLC. Even in the first case (Fig. 
1b), in which the helix pitch is P=250μm and the number 
of half-turns is below one (2d/P=0.4), the regions 
representing polarization states that induce C-points of 
different handedness are separated. Similar to the above 
case of the NLC cell, cylindrical symmetry in this case is 
broken and the dependence on the azimuthal angle is 
retained. Here, it is possible to form C-points by varying 
the ellipticity of the incident light. 

As it can be seen from Fig. 1c, a decrease in the CLC 
helix pitch to P=200μm (with an increase in the number 
of half-turns to unity) leads to localization of the regions 
that induce C-points of opposite signs in the vicinity of 
the corresponding poles on the Poincare sphere. When the 
CLC cell accommodates two half-turns of the helix with 
P=100μm, these regions transform into two bands located 
in the upper and lower hemispheres (Fig. 1d). 

It is interesting that, in the cases of CLC helices with 
integer numbers of half-turns considered above, the 
corresponding regions on the Poincare sphere become 
cylindrically symmetric so that the conditions of C-point 
formation no longer depend on the azimuthal angle. In 
these CLC cells, the appearance of C-points in the 
polarization-resolved conoscopic pattern is fully 
determined by the ellipticity of the incident light wave. 
So, the characteristic feature of the polarization-resolved 
conoscopic patterns of planar nematic and cholesteric LC 
cells is selectivity of the conditions of C-point formation 
with respect to polarization parameters of the incident 
light wave.  For planar NLCs, it is found that the 
appearance of C-points is determined entirely by the 

azimuthal polarization angle ( )inc

p
  whereas, for CLC 

cells, the control parameter is the ellipticity ( )inc

ell
 . 
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