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Abstract—This paper presents an efficient search method for 
equivalent thin film filter realization to a given design under boundary 
conditions. To calculate realizations, the algorithm presented in [1] is 
used and the boundary conditions are given in the form of refractive 
index intervals. Since the number of possible solutions increases 
exponentially with the number of film layers, only a small part of them 
can be checked for boundary conditions in a reasonable time. The 
method presented here uses the results of a Monte Carlo simulation and 
Yen's algorithm. The time consuming simulation is conducted only once 
for given boundary conditions. Since the boundary conditions depend on 
the fabrication process this method saves a significant amount of time 
during filter design. 
 
 
In [1] an exact synthesis algorithm for dielectric thin film 
filters with a uniform optical phase thickness is presented, 
based on a synthesis method for lossless electric lines [3] 
and reactance networks [4]. This algorithm has the benefit 
of providing all possible solutions in terms of thin film 
filter stacks to a given transmission or reflection 
characteristic under the restrictions stated above. In [1] it 
is only assured that the refractive indices of all solutions 
have strictly positive values. Unfortunately, this is 
insufficient for technological realization since the 
refractive indices of practical materials only exist as 
discrete values. One way to alleviate this restriction is to 
use a mixture of materials with different refractive indices 
for layer fabrication [5-7]. Another way is to replace a 
given refractive index layer by a symmetric system of 
three layers by application of the Herpin equivalent index 
theorem [8-11]. Both ways are especially suited to 
creating arbitrary refractive index values in a certain 
interval which is bounded by two refractive indices nL 
and nH
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. From a technological point of view this subset of 
realizable solutions is of substantial interest. Instead of 
refractive indices n optical admittances η known from 
[12], which are given by will be used in 
the following. The boundary condition in this paper is 
therefore given by Eq. (1). 

L H0 1,j<η η η , j = , N≤ ≤ …   (1) 

The synthesis algorithm presented in [1] states necessary 
and sufficient conditions for the feasibility of the filter 
transmission T as a function of the uniform phase 
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thickness δ which is given in Eq. (2). 
12π −⋅⋅⋅ λdn=δ   (2) 

As mentioned above, only strictly positive admittance 
values are guaranteed. With respect to Eq. (1) the 
following questions arise. Are there any thin film stacks 
among the equivalent solutions which fulfill Eq. (1)? Is 
there an efficient search method for these solutions, 
especially if the filter order with respect to the number of 
thin film layers N is high? Regarding the first question, 
only precise necessary conditions can be stated for low 
order filters by using various algebraic and numeric 
methods at the moment. This subject will be treated in a 
subsequent paper. 

First consider the derivation of the characteristic matrix 
M and the transmission T for a general dielectric thin film 
filter stack with N layers presented in [12]. The stack is 
embedded in an ambient medium with the admittance η0 
on one side and a substrate medium with ηN+ 1
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 on the 
other side. By demanding uniform optical phase thickness 
for all layers, the frequency variable δ as given in Eq. (2) 
can be used. Now a well known frequency transformation 
s = σ + iΩ = tan(iδ) presented in [3] and [13] with s as a 
new complex frequency variable and Ω = Im{s} is 
introduced. By mapping the interval δ=[-π/2;π/2] onto the 
whole imaginary axis in the s-plane, this frequency trans-
formation links the optical synthesis problem considered 
here to well known concepts for the synthesis of lossless 
transmission lines with uniform time delay and reactance 
filters [4], [13]. By using this approach, we get M(s), τ(δ) 
and T(δ) as given in Eqs. (3), (4) and (5).  
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For the filter synthesis procedure, the algorithm presented 
in [1] states necessary and sufficient conditions for the 

A design method for thin high-order optical film filters under 
boundary conditions 

B. Diehm1*, C. Gulde, and N. Frühauf1 

1

Received May 23, 2011; accepted June 22, 2011; published June 30, 2011 

Chair of Display Technology and Research Center SCoPE, Universität Stuttgart, Allmandring 3b, 70569 Stuttgart  



doi: 10.4302/plp.2011.2.10 PHOTONICS LETTERS OF POLAND, VOL. 3 (2), 73-75 (2011) 

http://www.photonics.pl/PLP © 2011 Photonics Society of Poland 

74 

filter's transmission function so we start with a given 
transmission function T(δ). From there, the so called 
response function K(s) of the filter is derived in [1] in a 
unique way. The response function is related to the 
transmission coefficient by Eq. (6) and it is the initial 
point for derivation of a set of equivalent solutions. 
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=δτ
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First, a so-called characteristic function f(s) is introduced, 
which is related to the response function by equation (7).  

( ) ( ) ( ) ( ) 1
1

0 +NηηsKsK=sfsf −−−⋅−⋅   (7) 

From Eqs. (3), (4) and (6) it follows that the numerator of 
Eq. (7) is a polynomial in s. By assigning the roots of the 
numerator polynomial on the right side in Eq. (7) to f(s) 
and f(-s) on the left side, a particular equivalent filter 
solution is selected. Finally, by considering the response 
function and one particular characteristic function a 
unique filter realization can be derived with the 
algorithms presented in [1]. There it is also pointed out 
that the constant numerator coefficients of Eq. (7) are 
fixed, so K(s) and f(s) are fully characterized by the roots 
of their numerator polynomials. These roots and their 
distribution on the real axis and in the complex plane will 
be considered in the remaining part of the paper. 
The next step is to get a prediction if there can exist at 
least one solution which fulfills Eq. (1), and how to 
efficiently search for characteristic functions which fulfill 
Eq. (1) in the equivalent set of all solutions. This is done 
by conducting a Monte Carlo simulation for the roots of 
K(s) and f(s) with given boundary conditions according to 
(1) for a fixed number of N layers. 

In a Monte Carlo simulation the root probability 
distributions of the numerator polynomials of K(s) and 
f(s) for realizable thin film layer stacks according to Eq. 
(1) are approximated. The first step in every experiment 
in the simulation is to generate optical admittances of a 
realizable thin film layer stack by using random numbers. 
Random numbers are independent and uniformly 
distributed in the interval given by Eq. (1). For such a 
filter stack the numerator polynomials Knum(s) and fnum
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(s) 
can be calculated by using the Eq. (8) and (9), which can 
be derived from [1]. 
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Next the roots of Eqs. (8) and (9) are calculated and 
separated into roots on the real axis and in the complex s-
plane without the real axis. The steps previously 
described are repeated S times in the simulation and the 

roots are collected. These four generated sets of roots are 
now used to create two histograms each for Knum(s) and 
fnum

Consider a filter response function K

(s). The histograms for the real axis have dimension 
one while the ones for the complex plane have dimension 
two. To get an accurate description of the shape of the 
root probability distributions a dynamic binning method 
can be used. If the number of roots in one bin exceeds a 
specified maximum value, the bin is subdivided into a 
number of smaller bins of equal size. This procedure is 
repeated until a preset minimum bin size has been 
reached. In this way the areas of distribution with a high 
number of roots are described in greater detail than the 
areas with only a few roots. By dividing the number of 
roots in one bin by its length resp. area, we get the root 
density for each bin. Since the steps described in this 
section to generate the histograms depend only on the 
number of thin film layers N and the boundary conditions 
stated in Eq. (1), the Monte Carlo simulation has to be 
done only once. 

0(s) which fulfills 
the necessary and sufficient conditions stated in Ref. [1]. 
This function can be derived, for example, from a given 
transmission characteristic which has now to be realized 
as a thin film filter. By calculating the roots of K0(s) and 
searching the associated bins in the generated histograms, 
we can get a prediction about the overall realizability of 
the filter function. If some of the roots of K0(s) are 
associated with bins of the histogram with a very low or 
even zero root density, the chance is high that there exists 
no equivalent solution which is at all realizable according 
to Eq. (1). If the overall realizability for the considered 
K0

To efficiently search for equivalent solutions with a high 
chance of realizability according to Eq. (1), all possible 
roots of the characteristic function K

(s) is high enough, we can start the search for 
equivalent solutions. 

0(s) are calculated by 
using Eq. (7). Again, to every root s0 of Eq. (7), the 
associated bin with its root density ρ(s0) in the one- and 
two-dimensional histogram is determined. Different 
equivalent solutions are only created by roots s0 of f(s) 
which are not located on the imaginary axis because for 
roots on the imaginary axis there is no difference between 
assigning them to f(s) or f(-s). Now assume that one of 
these roots s0 = σ0+iΩ0 lies in the right open half plane 
with an associated bin in the histogram with the root 
density ρ(σ0+iΩ0). The corresponding root in the left 
open half plane, therefore, is located at s=-σ0+iΩ0 with 
the root density ρ(-σ0+iΩ0). Now for every selection 
between a root in the right open half plane and the 
corresponding root in the left open half plane, a 
probability of feasibility P(s0
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) is stated by Eq. (10). 
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In the case of ρ(σ0,Ω0) = ρ(-σ0,Ω0) = 0, the probability 
value of P(s0)=1/2 is assigned to the corresponding  
selection. Note that fnum(s) has to be a polynomial with 
real coefficients in s so it is sufficient to consider only 
one root of every complex conjugated root pair. By 
multiplying all possible root selections an overall 
probability of feasibility for every equivalent solution can 
be stated by Eq. (11). The set E contains a decision for 
every root selection, which is necessary to determine 
fnum(s) in a unique way. That is to say, if the root in the 
right or the left open half plane was selected for fnum
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Since for every set E a probability PE can be calculated 
and every set E links to one equivalent solution, all 
equivalent solutions can be ordered according their 
probability of realizability derived by the histograms of 
the Monte Carlo simulation. Now we have to find the K 
selection sets with the highest probability PE1 ≥ … ≥ PEK 
of realizability. This problem can be described by using a 
binary decision graph as pictured in Fig. 1. 

 
Fig. 1. The problem of finding the K root selection sets with the highest 

probability of feasibility is transformed into a binary graph. 

Because single root selections are binary decisions (for 
the left or the right open half plane) and are considered 
independent of each other, the graph has a simple 
structure with interchangeable segments. The K shortest 
paths can be found with a simplified version of Yen's 
algorithm. Yen's algorithm finds the K shortest loopless 
paths between two nodes in a graph. As a result, we get 
the K decision sets and, further, the related characteristic 
functions with the highest probability of feasibility. Now 
we can derive a thin film layer stack from every 
equivalent solution found. Since the method presented 
here only gives a probability of feasibility, we have to 
check every solution if it complies with the given 
boundary conditions.  

The results presented here concern only the problem of 
finding feasible solutions according to Eq. (1). To ensure 
that there exists, at least, one feasible solution in the 
solution set, at first a thin film stack with N=30 layers 
was generated. The optical admittances of all layers were 
randomly chosen from the interval [1.4;2.6].  The 
admittances of the ambient and substrate media were 
selected to air with η0=1.00 and glass with ηN+1=1.52. 
Now the associated response function K0(s) for this filter 
stack was calculated and used as a starting point like in 

the previous section. To generate sufficient data in the 
Monte Carlo Simulation S≈104 experiments were created 
from i.i.d. random variables which were uniformly 
distributed in the interval [1.7; 2.3]. Again, η0 and ηN+1 
were selected as above. Now the search method presented 
in the previous section was used to find feasible solutions. 
A solution was considered feasible if Eq. (1) with ηL=1.4 
and ηH=2.6 was met for all layers. To compare the 
results, also a standard linear search was conducted.  The 
linear search runs through all possible root selections 
without using the information provided by the histograms 
(see Fig. 2). 

 
Fig. 2: Comparison between the histogram based search method and a 

standard linear search. 

The number of examined solutions is plotted against the 
number of feasible solutions found. Both search methods 
were stopped after ten minutes runtime. As depicted in 
Fig. 2, the histogram based search finds about twice as 
much feasible solutions in the same time. In fact, to 
retrieve the next solution, the histogram based search 
needs more time than the linear search but this is 
outweighed by the higher probability of feasibility. All 
the simulations were implemented in Octave. By using 
dynamic binning,, more sophisticated generation of 
histograms, search algorithms and C++ language, the 
performance can be farther improved. Since the boundary 
conditions only change if the technological setup has to 
be changed, the time consuming Monte Carlo simulation 
has to be conducted only in this case. 
 

References 
 

[1] A. Rowinska-Schwarzweller, Proc. SPIE 12 (2004). 
[2] J.Y.Yen, Mangement Science 17, 712 (1971). 
[3] P.I. Richards, Proc. of the IRE 36(2), 217 (1948).  
[4] W. Bader, Archiv für Elektrotechnik 34(4), 181 (1940). 
[5] V. Yadava, S. Sharma, K. Chopra, Thin Solid Films 17, 243 (1973). 
[6] S. Lange et al., Thin Solid Films 502, 29 (2006). 
[7] H. Terui, M. Kobayashi, App. Phys. Lett. 32, 666 (1978). 
[8] A. Herpin, Comptes Rendus 225, 182 (1947). 
[9] J.A. Dobrowolski, S.H.C. Piotrowski, App. Opt. 21, 1502 (1982). 
[10] L.I. Epstein, J. Opt. Soc. Am. 42, 806 (1952). 
[11] M.C. Ohmer, J. Opt. Soc. Am. 68, 137 (1978). 
[12] H.A. Macleod, Thin Film Optical Filters (Institute of Physics 

Publishing, 2001). 
[13] R. Unbehauen, Netzwerk und Filtersynthese (R. Oldenburg, Verlag, 

Wien 1993).  


