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Abstract—In the paper a quantum description of an effective state of 
polarization for an electromagnetic field containing variously polarized 
photons is presented. The discussion of the problem includes the 
quantum character of a single photon, comparison with a classical field, 
matrix description of photon polarization and physical interpretation of 
the Pauli representation of a density operator that represents photons in a 
statistical ensemble. 
 
 
In quantum optics, the description of an electromagnetic 
field is based on quantum oscillators and each of them is 
connected with a different direction of light propagation, 
different polarization of light ( 2,1=µ ) and different 
energy of transition ω=∆Ein an atom ( ).

0

 Each act of 
emission/absorption in an atom is related to changing the 
excitation level in an oscillator because it physically 
means that one photon appears/disappears. The state of an 
oscillator excited n times is created from the vacuum state 

 [1]: 
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where n  is the eigenstate of an energy operator, which 

can be expressed by annihilation ( â ) and creation ( +â ) 
operators or by photon-number operator ( N̂ ) [1]: 
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Although the photon is usually depicted as a wave-

packet or some kind of "elementary piece" of an 
electromagnetic field, it is not trivial to make a 
connection between state vector n  (which is 
Schrödinger’s equation solution) and time-space 
distribution ),( trE  of the field. 
 

It can be proved that the phase of ),( trE  and the 
number of photons satisfy the uncertainty principle [2]: 
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In particular, it means that ),( trE  cannot be written for 
single photons. Each statistical realization of a field 
connected with photon emission is completely 
unpredictable. It automatically means that the photon 
does not have any determined spectrum. 

The plane wave is related to a so-called coherent state, 
which is the superposition of Hamiltonian eigenstates [2]: 
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where α  is a complex amplitude of a wave. Quantity ω  
takes on a meaning of frequency in the case of coherent 
states. The number of photons is a random variable 
described by the Poisson probability distribution: 
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The electromagnetic field in a coherent state has similar 
properties to classical waves. For example, if one 
considers the behaviour of that field on a beam-splitter – 
there is no quantum entanglement at the output, in 
contrast to n  states [2]. 

Further concern of various effects is simple, because 
plane waves with different frequencies can be added 
classically. Thus one can see complementarity to the well 
known theory of temporal partial coherence of light,  
in particular – the value of a degree of polarization (DOP) 
less than 1, which can be understood as a consequence of 
mismatching states of polarization for different 
wavelengths. 
 

Let us return to Hamiltonian eigenstates of a quantum 
oscillator. When we want to define the state of 
polarization for a single photon, we consider the state 
vector [3]: 
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,vh 21 cc +=ψ  (6) 

 
where 0)(ˆh 1 k+

== µa  and 0)(ˆv 2 k+
== µa  are horizontal 

and vertical polarizations of a photon. 
Thus ψ  is a superposition of these two types of 
oscillator’s excitation. Coefficients ci

 

 may be complex 
values, in general. They satisfy the normalization 
condition. Because of temporal evolution of Hamiltonian 
eigenstates [4]: 

( ),v(0)h(0))( 21
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it is reasonable to write the phase factor rie ϕ  only by one 
of the coefficients – then it also has the meaning of a 
(constant) phase difference between c1 and c2

 

. Using the 
Dirac (vector) notation, one can write: 
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Form (8) is consistent with the general rule that density 

operator ψψρ =ˆ  is a Hermitian matrix. It can be 

further represented as a sum of identity matrix 0σ̂  and 
Pauli matrices iσ̂  with coefficients is  (i = 1, 2, 3) [2]: 
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The coefficients from the above representation form a so-
called Bloch vector: 
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which is depictured on the Bloch sphere. It is similar to 
the Stokes vector and Poincare sphere but the main 
difference is that linearly polarized states (which are basis 
states) are at the sphere poles. Because of some aspects in 
describing quantum filters [3], the angle ranges should be 
chosen as: )πθ 2;0∈  and )πϕ ;0∈r . A few examples 
of polarizations are: 

• ( )vh
2

10,45 2
0 +==+ π  is +450

• 

 linear 

polarization 

( )vh
2

10,45 2
30 −==− π  is -450

• 

 linear 

polarization 

( )vh
2

1, 22 i+==+ ππ  is left handed 

circular polarization 

• ( )vh
2

1, 22
3 i−==− ππ  is right handed 

circular polarization 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Bloch sphere with examples of photon polarizations. 

 
The quantum field containing a determined number of 

photons which are variously polarized and propagate in 
the same direction in free space (let us call it a photon-
beam) need to be described by using a mixed quantum 
state: 
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where ),( rP ϕθ  is the probability density distribution that 
the state of polarization of a random photon picked from 
a statistical ensemble is rϕθ , . The double integral is a 

sum over all angles’ values and θsin  appears as a result 
of coordinate system transformation. 
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The density operator for a mixed state can be also 

represented as a sum of the identity matrix and Pauli 
matrices with proper coefficients, but these coefficients 
do not form a normalized vector as in the case of Eq. 
(10). Thus it may be written as [2]: 
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where 1<p  and ( ) 1
3
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is . After elementary 

transformations (11) takes the form [5]: 
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where .1, 21
21

21 =+
+
−

= PP
PP
PPp  Both sums in Eq. (13) 

represents states vectors on the Bloch sphere, so the 
density operator can be rewritten as: 
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It is the key conclusion – both of the representations (11) 
and (14) are equivalent. It means that the sum over all 
possible states boils down to the sum of only two states 
which have opposite senses on the Bloch sphere. 
Representing one of the states as efef ϕθ ,  makes it a so-

called effective state of polarization. Angle parameters 
that describe it can be calculated when we rewrite Eq. 
(11) and (14) in matrix forms and compare : 
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and 
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This comparison leads us to four simultaneous equations 
and pefef ,,ϕθ  are the solution: 
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where: 
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In conclusion, we presented a new way to describe the 
photon state in a statistical ensemble. The equations 
above show the relation between an effective state of 
polarization and probability density distribution ),( rP ϕθ  
- this function characterizes the photon source that emits 
one photon by another, forming a photon-beam. 
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