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Abstract—Electro-optical properties of deformed helix ferroelectric 
liquid crystal (DHFLC) cells are studied by using a general theoretical 
approach to polarization gratings in which the transmission and 
reflection matrices of diffraction orders are explicitly related to the 
evolution operator of equations for the Floquet harmonics. DHFLC cells 
with a subwavelength pitch are found to be optically equivalent to 
uniformly anisotropic biaxial layers. We calculate the transmittance as a 
function of the electric field and compare the results with the 
experimental data. The theoretical and experimental results are found to 
be in good agreement. 
 
 

A polarization grating (PG) can generally be described 
as an optically anisotropic layer characterized by 
anisotropy parameters that periodically vary in space 
along a line in the plane of its input face. Unlike 
conventional phase and amplitude diffraction gratings, 
PGs act by locally modifying the polarization state of 
light waves passing through them. Owing to the one-
dimensional (1D) in-plane periodicity, this introduces 
periodically modulated changes of the polarization 
characteristics giving rise to polarization-dependent 
diffraction. In particular, the latter implies that a PG 
divides a monochromatic plane wave into differently 
polarized diffracted waves. 

Over the past decade PGs have attracted much 
attention due to a unique combination of their optical 
properties: (a) it is possible to achieve 100% diffraction 
into a single order; (b) diffraction efficiencies are highly 
sensitive to incident light polarization; and (c) the state of 
polarization of diffracted orders is determined solely by 
the parameters of a PG [1-3]. There are numerous 
applications in a variety of fields, including polarimeters, 
displays, polarizing beam splitters, beam steering and 
polarization multiplexers where PGs have been found to 
be useful [4-6].  

The well-known method to produce PGs is based on 
polarization holography [6]. It uses two differently 
polarized light beams to record a spatially modulated 
polarization state of the resultant light field on suitable 
media such as azobenzene containing polymer systems 
and silver-halide materials. 
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The holographic technique has been extensively used 
to create polarization gratings in liquid crystal (LC) cells 
with photosensitive aligning substrates such as linear 
photopolymerizable polymer layers [7, 8], azo-dye films 
[9], azo-dye doped polyimide [10, 11], and azobenzene 
side-chain polymer layers [12]. 

In this method, irradiation of the substrate with a 
holographically generated polarization interference 
pattern gives rise to spatially modulated light induced 
ordering in the photoaligning layer. This ordering 
manifests itself in the effect of photoinduced optical 
anisotropy and determines the anchoring properties of the 
layer such as its (polar and azimuthal) anchoring 
strengths and easy axis orientation [13]. 

The anchoring parameters of the photoaligning film 
thus undergo periodic variations across the substrate face 
leading to the formation of orientational structures in the 
liquid crystal cells characterized by spatially periodic 
distributions of the liquid crystal director, 

( , , )x y zd d d=d , which is a unit vector that denotes a 
local direction of the preferential orientation of LC 
molecules. In liquid crystals, the elements of the dielectric 
tensor,ε , can be expressed in terms of the LC director 

, , ||( ), ( ) / ,i j i j a i j au d d u
⊥ ⊥ ⊥

ε = ε δ + = ε − ε ε    (1) 

where  ,i jδ  is the Kronecker symbol, au  is the anisotropy 

parameter and on n
⊥ ⊥

≡ = µε  ( || ||en n≡ = µε ) is 

ordinary (extraordinary) refractive index (the magnetic 
tensor of LC is assumed to be isotropic with the magnetic 
permittivity µ). So, the periodic orientational LC 
configurations define the so-called liquid crystal 
polarization gratings (LCPG). These gratings will be of 
our primary interest. 
 Common methods most generally employed to derive 
theoretical results for PGs typically rely on the well-
known Jones matrix formalism and its modifications [1-4, 
6, 12]. These results are limited by their assumptions to 
large grating periods and normal incidence. In addition, 
using Jones calculus implies neglecting multiple 
reflections. 
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 In this work we follow the theoretical approach to PGs, 
which is derived as a generalization of our method 
developed in [14, 15] for stratified anisotropic media and 
goes beyond the limitations of the Jones calculus (details 
can be found in [16]). 
 Specifically, we deal with the light transmission 
problem for a polarization grating in the slab geometry. In 
this geometry, the z axis is normal to the bounding 
surfaces of the layer: z = 0 and z = D, the grating with the 
grating pitch, gΛ , and the grating wave vector, 

g gk=k x , where 2 /g gk = π Λ  is the grating wave 
number, is characterized by the condition of in-plane 
periodicity for the elements of the dielectric tensor, ε : 

( ) ( ), ,i j g i jx xε + Λ = ε . So, the x-z plane is defined as the 
plane of grating.  

We apply the method for a systematic treatment of the 
technologically important case of the deformed helix 
ferroelectric liquid crystals (DHFLCs) [17, 18] where the 
liquid crystal director 

( , , ) (cos , sin cos , sin )x y z t td d d= = θ θ Φ Φd   (2) 

lies on the smectic cone with the smectic tilt angle tθ  and 
rotates in a helical fashion about a uniform in-plane twist 
axis (the x-axis) forming the ferroelectric LC (FLC) 
helical structure. 
 In the presence of weak electric field, E=E z , which 
is well below its critical value at the helix unwinding 
transition, CE E<< , the azimuthal angle around the cone, 
Φ , can be written in the form [18-20] 

2
( ) sin , ,E x

P

π
Φ = ϕ + ∆Φ ϕ ≈ ϕ + α ϕ ϕ =      (3) 

where the electric field induced distortion ∆Φ  linearly 
depend on E through the electric field parameter Eα  
proportional to the ratio of the applied and critical electric 
fields: / CE E . So, in the regime of weak electric field, 

the helix pitch P is equal to the grating period, g PΛ = . 
 In DHFLC cells, the FLC helix is characterized by a 
short submicron helix pitch, P<1μm, and a relatively 
large tilt angle, 030tθ > . Electro-optical response of 
DHFLC cells exhibits a number of peculiarities that make 
them useful for LC devices such as high speed spatial 
light modulators [19, 21, 22] and colour-sequential liquid 
crystal display cells [20]. So, in this study, our goal is to 
examine electro-optical properties of DHF liquid crystals 
based on the general theoretical approach describing 
polarization gratings. 
 In our experiments, the transmittance of light passing 
through crossed polarizers was measured as a function of 
the applied electric field. We used the FLC mixture FLC-

576A (from P. N. Lebedev Physical Institute of Russian 
Academy of Sciences) as a material for the DHFLC layer. 
At room temperature, this mixture has the helix pitch, P, 
around 200 nm. 
 

 
 

Fig. 1. Transmittance of light passing through crossed polarizers, Tx,y  as 
a function of the applied electric field for the DHFLC cell of  thickness 
D=120μm filled with the FLC mixture FLC-576A. Solid line represents 
the theoretical curve computed for the electric field parameter αE=γEE 

with γE

 
≈0.64μm/V. 

The cells placed between crossed polarizers were 
illuminated with the light from a semiconductor Ga-As 
laser (λ=650nm) and the output was collected by a 
photodetector. 

The transmittance versus electric field curve shown in 
Fig. 1 presents the results measured in the cell in which 
the thickness of the DHFLC layer, D, was about 130μm. 
Similarly, in Fig. 2, the transmittance Txy

 

 is plotted 
against the applied electric field, E, for the case where the 
cell thickness is about 52μm. 

 
 

Fig. 2. Light transmittance, Tx,y

 

, of the DHFLC cell versus applied 
electric field, E. The cell thickness is estimated at about D=52μm. Solid 

line represents the theoretical curve. 

In order to interpret the experimental data, theoretical 
analysis can be performed by using a short-pitch 
approximation which is applicable in the limiting case of 
chiral smectic helical configurations with the 
subwavelength helix pitch, P< λ. In this approximation, it 
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can be shown that such DHFLC cells are optically 
equivalent to uniformly anisotropic biaxial layers. In 
these layers, the diagonal element 

( ) 11 2 2/zz

zz z on n −−

⊥
ε ε = = η                  (4) 

where ( )21 / 1 sinη = + ν Φ , 2sina tuν = θ  and 

( )
2

1

0

... 2 ...d
π

−
= π ϕ∫ , gives the principal value of the 

effective dielectric tensor for the optic axis normal to the 
cell (parallel to the z axis), whereas in-plane anisotropy is 
characterized by the averaged dielectric tensor 

( )1 eff

au d d−

⊥ αβ αβ α β
ε ε = δ + η ,                (5) 

where , { , }x yα β ∈ . 
 Similar to the LC dielectric tensor (1), the tensor (5) 
can be expressed in terms of the in-plane optical axis, 
(cos , sin , 0)d dϕ ϕ with the azimuthal angle, dϕ , and its 

eigenvalues, 2
±± = nε . These parameters along with the 

thickness parameter 2 /h D= π λ  determine the 
transmittance Txy (the formula can be found in [16]) that 
describes the intensity of the light passing through 
crossed polarizers when the incident wave is linearly 
polarized along the helix axis and can be used to evaluate 
dependence of on the applied electric field, E. The known 
parameters characterizing the FLC mixture FLC-576A 
that enter our formulas are the ordinary (extraordinary) 
refractive index and the tilt angle estimated at no=1.5 
(ne 32tθ ==1.72) and deg, respectively. So, for the 
anisotropy parameters, ua 0.315ν ≈ and v, we have: and 

2sin 0.09a tuν = θ ≈ . 
 From the discussion after (3), the electric field 
parameter Eα  is proportional to the electric field, 

E E Eα = γ , and thus is determined by the coefficient of 

proportionality Eγ . This coefficient is the sole fitting 
parameter in our calculations.  

Figures 1 and 2 show that the theoretical curves 
computed at 0.64Eγ ≈ µm/V and the experimental data 
are in close agreement. Figure 3 also demonstrates that 
the transmittance versus electric field curve will flatten in 
the vicinity of the origin when the cell thickness is chosen 
in such a way that the birefringence dependent factor 
equals zero at E=0. 

 
 
In conclusion, we have used the method developed in 

[16] as a tool of theoretical investigation into the electro-
optical properties of deformed helix ferroelectric liquid 
crystal gratings with a subwavelength pitch. We have 
shown that such DHFLC cells are equivalent to uniformly 

anisotropic biaxial layers. We have used the analytical 
results to evaluate the light transmittance measured in our 
experiments and found that the predictions of the theory 
are in good agreement with the experimental data.  
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