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Abstract—Optical fields in any state of spatial coherence are 
modelled by using separately radiant and virtual layers of point sources 
that emit radiant and modulating energies along specific rays in the 
phase-space representation. The model allows manipulating structured 
spatial coherence supports individually as required by  spatial coherence 
modulation. It can be implemented in very efficient algorithms on 
conventional platforms for numerical calculations and simulations as 
illustrated by examples of interference and diffraction in the case of 
gratings and slits. 
 
 

Many contemporary developments at micro- and nano-
scales (e.g. spatially partial illumination for microscopy, 
image processing, beam shaping, and optical tweezers) 
require taking into account the spatial coherence state of 
light. However, the conventional formulation of optical 
coherence theory is not oriented toward useful techniques 
or technology. Indeed, its mathematical structure is 
involved, which makes i) the phenomena difficult to 
understand and ii) the algorithms for numerical 
calculations and simulations not efficient enough. As a 
consequence, relatively simple applications require much 
effort. 

Therefore, a novel mathematical tool seems to be 
necessary in order to formulate a simpler and more 
efficient modelling of optical fields in any state of spatial 
coherence. To this aim, new physical concepts and 
strategies should be introduced to improve the 
understanding of the phenomena, and to optimize 
numerical calculations and simulations and design 
procedures. Such concepts and strategies can be properly 
defined in the framework of the phase-space 
representation of optical fields provided by the spatial 
coherence wavelets [1], in such a way that they allow 
rigorous modelling of those fields in terms of point 
sources and rays [2], as discussed below. 

These modelling elements have been used by 
geometrical optics [3], but its rays are paths in the space 
which are calculated by means of the eikonal equation or 
the Hamilton characteristic functions. Such rays cannot 
account for the energy transport of the field or its 
correlation, i.e. they are not able to describe interference 
and diffraction. In contrast, the marginal power spectrum 
[1] associated with  spatial coherence wavelets, addresses 
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specific amounts of both radiant and virtual energies [4] 
of the field to given points on the aperture (AP) and 
observation (OP) planes, respectively. These energies are 
added at the cross points of the rays, describing 
interference and diffraction. Furthermore, their addressing 
to specific points on two planes allows modelling  energy 
transport along the paths (or rays [4]) from each point at 
the AP to any point at the OP, and the starting point as a 
point source [2]. 

This model provides efficient algorithms for numerical 
calculations and simulations [5] and effective support for 
novel techniques as the spatial coherence modulation [6] 
used, for in instance, in beam shaping [7]. 
 

In this phase-space representation, an optical field of 
wavelength λ, wave-number k=2πλ-1, frequency ν, power 
distribution S(ξ) and complex degree spatial coherence  
µ(+,−) = |µ(+,−)|exp[iα(+,−)] [3] at the AP, with (+,−) ≡ 
(ξA+ξD/2, ξA−ξD
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/2 ), is denoted by the marginal power 

spectrum  where: 
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 (2) 
is provided by the virtual point sources [2] at the same 
plane. The centre and difference coordinates (ξA, ξD) and  
(rA, rD) involved in (1) and (2) denote pairs of points with 
separation vectors ξD within structured spatial coherence 
supports [2] centred at ξA on the AP, and pairs of points 
with separation vectors rD within surroundings of points 
rA

( ) ( ) ( )[ ]ξξξ φitt exp=
 on the OP, respectively. It is assumed that a complex 

transmission  is attached at the AP, 
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so that ( ) ( )−−+= φφΔφ , and that z is the distance from 
the AP to the OP in Fresnel-Fraunhofer domain [3]. 
Furthermore, the cosine function in the integrand of (2) 
fulfil the virtuality condition [2] 
 

( ) ( ) 0,cos 2 =



 ∆−−+−⋅−∫

AP
ADAA rd

z
k φαξξr . 

 
The terms ( )Arad ξS  and ( )AAvirt ,ξrS  are optically disjoint 

in the sense that i) the former denotes the positive-definite 
radiant energy of the field [4], emitted by the layer of 
radiant point sources [2] at the AP, while the last denotes 
the modulating energies [4] emitted by the layer of virtual 
point sources [2] at that plane; ii) the former is 
independent from the spatial coherence state of the field, 
while the latter explicitly depends on it; iii) the former is 
only determined by the radiant point source (possibly) 
placed at the centre of the structured spatial coherence 
support, while the latter is only determined by the 
correlations between radiator pairs symmetrically 
disposed with respect to the centre of that support, 
independently of the presence of a radiant source at such 
a centre. These features allow manipulating the radiant 
and the virtual layers of the field at the AP separately, 
which significantly increases the efficiency of algorithms 
for numerical calculations and simulations. They also 
allow accessing individual structured supports for 
performing spatial coherence modulation [6]. Finally, the 
power spectra of the field at both the AP and the OP are 
given by 
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respectively. 
 

For the sake of simplicity, let us consider interference 
and diffraction by gratings and slits. Images in Fig. 1 are 
the graphs of the marginal power spectra (also called 
phase-space diagrams or simply ray-maps) of interference 
produced by a 6 pinhole-grating, illuminated by a uniform 
plane wave in different states of spatial coherence. Each 
point of the map denotes the energy emitted by the radiant 
and/or virtual point source at a specific position ξA at the 
AP onto a specific point rA

 

 at the OP. So, the origin of the 
phase-space coordinates (i.e. the ray along the optical 
axis) is placed at the mid-point of the map. Both the 
radiant and the virtual layers of point sources are depicted 
on the top of each ray-map, with the radiant layer 
sketched on the grating transmission. 

 
a) 

 
b) 

Fig. 1. Phase-space representation of interference (Fraunhofer domain) 
produced by a 6 pinhole-grating, illuminated by a uniform plane wave a) 

fully spatially coherent and b) spatially partially coherent. 
 
 
Each vertical bar of the ray-maps depicts the ray cone 
emitted by the point sources on the top over the whole 
OP. In this way, ray cones of energy ( )Arad ξS  are emitted 
by pure radiant point sources at the extreme pinholes of 
the grating, while ray cones of energy ( )AAvirt ,ξrS  are 
emitted by pure virtual point sources turned on at the mid-
points of the opaque segments of the grating (Fig. 1a). 
Ray cones of energy ( ) ( )AAvirtArad ,ξrSξS +  are emitted at 
the second to the fifth pinhole because of the coincidence 
of a radiant and a virtual point source in such pinholes, 
which gives dual point sources [2] there. The profiles at 
the bottom and at the right of each figure depict the power 
spectrum at the AP and at the OP respectively, and are 
obtained by integrating the energy values of the ray-map 
along the vertical and the horizontal axes, respectively. 
Fig. 1a is obtained under fully spatially coherent 
illumination, while Fig. 1b is obtained by spatially partial 
coherent illumination that turn off all the pure virtual 
point sources. For this calculation, the phase of the degree 
of spatial coherence was assumed equal to null and the 
magnitude values were: μ=1 for ξD=2na and μ=0 for 
ξD

a
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=(2n+1)a, with n=0, 1, 2.. It is possible by individually 
manipulating the structured supports associated to these 
sources. In this way, specific changes can be introduced 
in the interference pattern at the OP without changing the 
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power spectrum at the AP. It can be appreciated by 
comparing Figs. 1a and 1b. 
 
 
By properly increasing the density of point sources at the 
radiant layer, this model reproduces diffraction in 
Fresnel-Fraunhofer domain, as sketched in Fig. 2 for the 
diffraction of a spatially partially coherent and uniform 
plane wave by a slit. A Gaussian coherence degree was 
assumed in both situations, with standard deviation equal 
to a half of the slit width, and Fig. 2b was calculated in 
the Fresnel zone in the distance corresponding to the 
Fresnel number equal to 2. 
 
 

 

 
a) 

 
b) 
 

Fig. 2. a) Fraunhofer and b) Fresnel diffraction of a uniform spatially 
partially coherent plane wave by a slit. The ray-maps are 512x512 

matrices. Physical parameters assumed for the calculation: wavelength 
632.8nm, slit width 100µm, AP-OP distance 1m. 

 
 
 

Because of the partial coherence, there are no lateral lobes 
besides the main maxima of the diffraction patterns at the 
OP (profiles at the right of the ray-maps). 
Interference modulated by diffraction is also efficiently 
modelled by using radiant and virtual layers of point 
sources, as depicted in Fig. 3. 
 
 
 

 
 

Fig. 3. Fraunhofer diffraction of a uniform and fully spatially coherent 
plane wave by a Ronchi grating of 5 slits. The ray-map is a 1024x18000 
matrix processed without optimization in 7.68 sec. Physical parameters 
assumed for the calculation: wavelength 632.8nm, slit width 20µm, AP-

OP distance 1m. 
 

 
The novel concept of radiant and virtual layers of point 

sources is introduced in the phase-space representation of 
optical fields in any state of spatial coherence. Such 
sources emit radiant and modulating energies along 
specific rays from the AP to the OP. By properly 
integrating such energies, the power spectra at both the 
AP and the OP can be determined. 

The model allows manipulating structured spatial 
coherence supports individually in order to produce 
specific effects on the power spectrum at the OP, as 
required by the spatial coherence modulation. It can be 
implemented in very efficient algorithms on conventional 
platforms as MatLab® or Mathematica® for instance, for 
numerical calculations and simulations without restriction 
on matrix size, aperture shape or complex degree of 
spatial coherence. 

This model can be extended to both 2D non-paraxial 
and electromagnetic situations, subjects to be treated in 
future papers. 
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