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Abstract—In the present work, we theoretically study the 

entropy of a Cooper pair box coupled to a (single mode) of one-

dimensional transmission line resonator. The proposed scheme 

uses the Jaynes-Cummings model in presence of losses to study 

the time evolution of the system entropy. The coupling of these 

two subsystems provides an important indication of the 

influence of a Cooper pair box on the evolution of system 

entropy. Decaying CPB allows us to control the variation of 

entropy at certain times. 
 

Hybrid systems in the treatment of quantum information 

have gained great interest in recent years [1-2], due to the 

great advantage of combining atoms, spins and solid state 

devices with various applications, for example quantum 

computation and quantum information [3-4], quantum 

state engineering [5-8], atomic physics and quantum 

optics [9-10], photon blockade [11-12], quantum 

dynamics [13], and propagating phonons [14]. Hybrid 

systems besides being an imminently robust architecture 

open a new frontier for studying the ultra-strong coupling 

between individual microwave photons and "atoms" [15]. 

It is also possible to build hybrid quantum devices [16] 

that combine infinite degrees of freedom from different 

physical systems. In addition, they provide an alternative 

path for quantum mechanics testing under an unattainable 

size and mass parameter scheme [17-20]. In this work we 

have employed the Jaynes-Cummings (JC) model to treat 

the Cooper-pair box (CPB) coupled to a single mode of 

one-dimensional transmission line resonator (TLR) [20-

21] in the presence of losses [23] and the action of a time-

dependent external field. 

The TLR-CPB hybrid system is presented in Fig. 1.  
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Fig. 1. Schematic of the arrangement to investigate the system. 

 

We investigated the evolution of the entropy of the TLR-

CPB hybrid system. To discuss the requirements of the 

present proposal we will consider the system in the 

presence of losses and, therefore, including decoherence 

effects; to this end, let us take the following Hamiltonian, 

�̂� = �̂�𝑇𝐿𝑅 + �̂�𝐶𝑃𝐵 + �̂�𝐽𝐶 + �̂�𝐷 , (1) 

where �̂�𝑇𝐿𝑅 reports the transmission line resonator, �̂�𝐶𝑃𝐵  

describes the CPB subsystem, �̂�𝐽𝐶 represents the coupling 

between TLR-CPB and �̂�𝐷 symbolizes the CPB losses. 

By explicitly rewriting Eq. (1) we have, 

 

�̂� = 𝜔�̂�†�̂� +
1

2
𝜔𝐶𝑃𝐵�̂�𝑧 + 𝛿(�̂�+�̂� + �̂�†�̂�−)

− 𝑖
𝛽

2
|1⟩⟨1|, 

(2) 

where 𝜔 is the frequency of TLR and �̂�(�̂�†)  stands for 

the annihilation (creation) operator of the field (TRL); 

�̂�−(�̂�+) is the lowering (raising) operator acting on the 

CPB, �̂�𝑧  is the Pauli operator (�̂�𝑧 = |1⟩⟨1| − |0⟩⟨0|), 
𝜔𝐶𝑃𝐵  is the CPB frequency, and 𝛿  stands for theTLR-

CPB coupling strength. The wave function that describes 

the time evolution of the whole TLR-CPB system can be 

written as 

|𝜓(𝑡)⟩ = ∑[𝜑0,𝑛(𝑡)|0, 𝑛⟩ + 𝜑1,𝑛(𝑡)|1, 𝑛⟩]

∞

𝑛

, (3) 

where |1⟩ (|0⟩) represents the CPB in its excited (ground) 

state, n stands for the number of photons in the TLR, and 
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𝜑0,𝑛(𝑡) and 𝜑1,𝑛(𝑡) stand respectively for probability 

amplitudes of the states |0, 𝑛⟩ and |1, 𝑛⟩. 
In the present context we will consider initially the CPB 

subsystem in its excited state and TLR subsystem in a 

coherent state  |𝛼⟩, the entire system being written as, 

|𝜓(0)⟩ = |1⟩|𝛼⟩, where  |𝛼⟩ = ∑ 𝑒𝑥𝑝 (−
|𝛼|2

2
)

𝛼𝑛

√𝑛!
|𝑛⟩∞

𝑛=0 . 

As usual, we also assume that the TLR and CPB are 

initially decoupled, 𝜑0,𝑛(0) = 0  and  ∑ |𝜑1,𝑛(0)|
2

=∞
𝑛=0

1, thus   |𝜓(0)⟩ = ∑ 𝜑1,𝑛(0)|1, 𝑛⟩∞
𝑛=0 . 

The evolution of the time-dependent Schrodinger 

equation can be described as (ℏ = 1), 

𝑖
𝜕|𝜓(𝑡)⟩

𝜕𝑡
= �̂�|𝜓(𝑡)⟩,  (4) 

where �̂�  is the Hamiltonian of Eq. (2). Consequently, we 

can get a set of equations of motion expressed in the 

following, 

𝜕𝜑1,𝑛(𝑡)

𝜕𝑡
= −𝑖𝑛𝜔𝜑1,𝑛(𝑡) −

𝑖

2
𝜔𝐶𝑃𝐵𝜑1,𝑛(𝑡)

− 𝑖𝛿√𝑛 + 1𝜑
0,𝑛+1

(𝑡)

−
𝛽

2
𝜑1,𝑛(𝑡), 

(5) 

and 

 

𝜕𝜑
0,𝑛+1

(𝑡)

𝜕𝑡
= −𝑖(𝑛 + 1)𝜔𝜑

0,𝑛+1
(𝑡)

+
𝑖

2
𝜔𝐶𝑃𝐵𝜑

0,𝑛+1
(𝑡)

− 𝑖𝛿√𝑛 + 1𝜑1,𝑛(𝑡). (6) 

 

The solution of this system was solved numerically using 

the (4th order) Runge-Kutta method. 

The effect concerning the von Neumann's entropy 

offers a quantitative measure of the disorder of a system 

as well as its degree of impurity, as shown by Phoenix 

and Knight [24]. This kind of entropy, determined in the 

form  𝑆𝑇𝐿𝑅−𝐶𝑃𝐵 = −𝑇𝑟(�̂�𝑇𝐿𝑅−𝐶𝑃𝐵 𝑙𝑛( �̂�𝑇𝐿𝑅−𝐶𝑃𝐵)),  is a 

measure of the mixing of two (or more) subsystems. The 

density operator �̂�𝑇𝐿𝑅−𝐶𝑃𝐵 describes the entire system and 

can be defined as �̂�𝑇𝐿𝑅−𝐶𝑃𝐵 = |𝜓(𝑡)⟩⟨𝜓(𝑡)|; so the 

entropy takes the form, 

𝑆𝑇𝐿𝑅−𝐶𝑃𝐵 = −[𝑁𝑇𝐶
+ (𝑡) 𝑙𝑛(𝑁𝑇𝐶

+ (𝑡))
+ 𝑁𝑇𝐶

− (𝑡) 𝑙𝑛( 𝑁𝑇𝐶
− (𝑡))], (7) 

where the index TC is an abbreviation for 𝑇𝐿𝑅 − 𝐶𝑃𝐵 

and, 

𝑁𝑇𝐶
± (𝑡) = 

1

2

[
 
 
 
(∑ |𝜑1,𝑛(𝑡)|

2∞
𝑛=0 + ∑ |𝜑0,𝑛+1(𝑡)|

2∞
𝑛=0 ) ±

√
(∑ |𝜑1,𝑛(𝑡)|

2∞
𝑛=0 − ∑ |𝜑0,𝑛+1(𝑡)|

2∞
𝑛=0 )

2

+4(|∑ 𝜑1,𝑛+1
∗ (𝑡)𝜑0,𝑛+1(𝑡)

∞
𝑛=0 |

2
)

]
 
 
 
. 

The entropy  𝑆𝑇𝐿𝑅−𝐶𝑃𝐵 is zero when  �̂�𝑇𝐿𝑅−𝐶𝑃𝐵  represents 

a pure state and is maximum and equal to 𝑙𝑛( 𝑁) for a 

state of maximum mixing, where  𝑁  is the dimension of 

the Hilbert space. Nonetheless, here our state is pure only 

at 𝑡 = 0; for 𝑡 > 0  the state of the whole system loses its 

purity due to the action of time-dependent external fields 

and losses. 

The results obtained are shown in Figs. 2 and 3. Figure 2 

(a) concerns the lossless case in which entropy has an 

almost periodic character. After the beginning of the 

interaction, the TLR entropy tends to its minimum, then 

returns to its maximum and remains oscillating regularly 

due to the sequence of energy exchanges between the 

TLR and CPB subsystems. The entropy increases with the 

inclusion of CPB loss, in the interval (25 <δt <50), see 

Fig. 2(b); this increase becomes smaller with time. When 

the loss in CPB increases the maximum value of entropy 

diminishes in the interval (25<δt<50), see Fig. 2 (c). 

 
Fig. 2. Time evolution of the entropy when the TLR is initially prepared 

in a coherent state, for different values of the decay rate β: (a) β=0.0δ, 
(b) β=0.02δ, and (c) β=0.03δ, with α=7, ω=ωCPB= 8.35δ. 

 

Comparing Fig. 3(a) with Fig. 3(c) we note that entropy 

loses its periodic oscillations over time; a decrease in the 

minimum entropy amplitude is also observed. Both 

effects are due to losses on CPB. The time evolution of 

the TLR-CPB system shows a periodic increase and 

decrease of coherence as the system mixing increases. If 

the losses increase sufficiently, the values of maximum 

entropy of both subsystems go to zero. The TLR and CPB 

https://www.thesaurus.com/browse/nonetheless


doi: 10.4302/plp.v11i3.921 PHOTONICS LETTERS OF POLAND, VOL. 11 (3), 66-68 (2019) 

http://www.photonics.pl/PLP © 2019 Photonics Society of Poland 

68 

subsystems starting as pure (distinct) states end in 

vacuum states. 

In this work we show that it is possible to control the 

entropy only via the control of the loss parameter β in the 

CPB; but this is only possible when this parameter varies 

in the range of (0 < β < 0.02δ).   

 
Fig. 3. Time evolution of the entropy for different values of the 

parameters β: (a) β=0.05δ, (b) β=0.09δ, and (c) β=0.50δ, with α=7, 

ω=ωCPB= 8.35δ. 

To substantiate the reliability of our TLR-CPB system, 

we use these following typical experimental values 

involving the system: coupling value of δ = 100MHz and 

CPB frequency of ωCPB = 835MHz, see Ref. [25]. In Refs. 

[16], [26], we have that the TLR decoherence time is 

directly proportional to the lifetime and inversely 

proportional to the average excitation of TLR 𝜏𝑑 ∼
𝜏𝑙𝑖𝑓𝑒

⟨�̂�⟩𝐿𝑇𝑅
. 

The lifetime of CPB is 𝜏𝑙𝑖𝑓𝑒 = 200𝜇𝑠 [27] considering 

the very excited TLR, because the more excited the 

shorter the decoherence time ⟨�̂�⟩ = 49; thus, even for a 

relatively excited system our proposal has validity and 

still better it will become for a less excited system. We 

have a decoherence time at the TLR of 4μs, the Figs. 2, 3a 

and 3b, show a time of ~2μs below the decoherence time. 
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