
doi: 10.4302/plp.v11i1.862 PHOTONICS LETTERS OF POLAND, VOL. 11 (1), 4-6 (2019) 

http://www.photonics.pl/PLP © 2019 Photonics Society of Poland 

4 

Abstract—The effects of the global curvature of the reflecting 

surface on Makyoh (magic-mirror) topography imaging is analysed 

based on a geometrical optical model. It is shown that the effects can be 

taken into account by introducing an equivalent screen-to-sample 

distance which is a function of the real screen-to-sample distance and 

the global curvature. Special limiting cases are discussed and analysed 

for practical applications. 

 

 

Makyoh (or magic-mirror) topography is a powerful 

topographic tool for qualitative visualisation of surface 

defects of semiconductor wafers [1]-[4] and other mirror-

like surfaces [5]. Makyoh topography gets its name from 

an ancient bronze mirror of the Far-East origin [6] (the 

word ‘Makyoh’ means ‘magic mirror’ in Japanese). Such 

a mirror has a backside relief pattern, which is transferred 

to the polished front face as a nearly invisible surface 

relief during the machining of the mirror. Projecting a 

parallel beam (e.g., sunlight) onto the front surface, a 

reflected pattern corresponding to the back pattern 

appears on a distant wall due to the focusing/defocusing 

action of the local curvatures of the surface relief (Fig. 1) 

[7], giving the illusion of transparency. The modern 

version works in a similar way: the studied surface is 

illuminated by a uniform-intensity collimated light beam, 

and a reflected image is formed on a screen placed some 

distance away from the sample. The resulting topogram 

thus reveals the surface defects and texture in the image 

in the form of dark/bright patches or regions. The 

practical implementations usually employ additional 

optical elements and electronic cameras for imaging 

instead of a simple screen [2]. 

The method’s advantages, as compared to concurrent 

optical methods such as interferometry, are the extreme 

simplicity, low cost, no need for accurate sample 

positioning and calibration, real-time operation and high 

dynamic range. Makyoh topography found its most 
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fruitful applications in semiconductor technology for in-

line detection of surface defects [1]-[3], where qualitative 

detection is sufficient, and instant operation is required. 

Defected wafers thus could be removed from the 

manufacturing process to avoid faulted circuits and may 

be submitted to a more detailed and time-consuming 

individual analysis. 

 

Fig. 1. Schematic reprsentation of Makyoh imaging 

The studied samples often exhibit a global curvature. 

For example, in semiconductor technology the wafers are 

often curved due to deposited strained layers or possess a 

large-scale deformation. Ancient magic mirrors are also 

usually slightly convex [6]. The effects of this kind of 

global curvature on Makyoh imaging have, however, 

received only limited attention. Berry [8] has studied the 

special limiting case of a small surface relief. It was also 

shown that a low amount of curvature has a negligible 

effect on the method’s sensitivity [9]. Therefore, the aim 

of the present paper is a comprehensive study of the 

effects of curvature. 
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Although wave optical phenomena play in the role of 

the imaging mechanism [10], Makyoh imaging is 

understood usually in the framework of geometrical 

optics. A geometrical optical model of image formation 

has been presented in Ref. [11]. The two basic imaging 

equations are the following: 

 𝐟(𝐫) = 𝐫 − 2𝐿 grad ℎ(𝐫) (1) 

and 

 𝐼(𝐟) =
1

|(1−2𝐿𝐶𝑚𝑖𝑛)(1−2𝐿𝐶𝑚𝑎𝑥)|
. (2) 

 

Equation (1) represents the mapping of a surface point 

r to the image point f, according to the gradient field of 

the surface. The I(f) intensities of the image points’, as 

normalised to that of a flat surface, are determined by 

local curvatures, according to Eq. (2) - The reflectivity is 

assumed uniform. Here, Cmin and Cmax are the two 

principal curvatures in the point r, that is, the minimum 

and maximum of the second derivatives of h(r), the 

height profile. Positive curvatures mean a concave 

surface. L is the basic imaging parameter, the screen-to-

sample distance. Increasing this distance increases the 

image contrast, thus, the sensitivity of the method, but 

also the amount of image distortion. An optimum L value 

thus can be found, depending on the sample. We note that 

in the simple arrangement, L is naturally positive, but it 

can be negative when additional optics are employed for 

imaging [12]. 

Consider now a surface with a uniform global isotropic 

curvature Cg. We wish to know this curvature’s effects as 

compared to a globally flat surface. We assume that 

imaging is in the non-caustic regime (which is the 

preferred regime of Makyoh imaging [11]), that is, 

1−2LCmin,max > 0 for all over the surface; thus, we can 

drop the absolute signs from Eq. (2). 

As for Eq. (1), it is evident that the added uniform 

curvature means a linearly varying slope added along the 

surface, so a linear magnification 1−2LCg of the original 

image occurs. This trivial effect will not be discussed 

further and no magnification is considered in the rest of 

the paper. We note that this phenomenon can be utilised 

to determine the sample curvature radius using structured 

illumination and a reference flat [13]. 

The effect of the global curvature on image intensities 

now can be treated as follows. We regard Cmin and Cmax as 

pertaining to an originally globally flat surface. Then, we 

substitute Cmin + Cg and Cmax + Cg into Eq. (2) for Cmin and 

Cmax. After performing the multiplications and combining 

the like terms, we obtain the following for the reciprocal 

of the resulting image intensity Ig: 

1 𝐼𝑔 = 1 − 2𝐿𝐶𝑚𝑖𝑛 − 4𝐿𝐶𝑔 − 2𝐿𝐶𝑚𝑎𝑥⁄ +

+4𝐿2𝐶𝑚𝑖𝑛𝐶𝑚𝑎𝑥 + 4𝐿2𝐶𝑚𝑖𝑛𝐶𝑔 + +4𝐿2𝐶𝑚𝑎𝑥𝐶𝑔 + 4𝐿2𝐶𝑔
2. (3) 

 

After rearranging, factoring out (1−2LCg)2 and 

performing some grouping, we finally obtain: 

 

1

𝐼𝑔

= (1 − 2𝐿𝐶𝑔)2 [1 −
2𝐿

1 − 2𝐶𝑔

(𝐶𝑚𝑖𝑛 + 𝐶𝑚𝑎𝑥) + 

+ (
2𝐿

1−2𝐿𝐶𝑔
)

2

𝐶𝑚𝑖𝑛𝐶𝑚𝑎𝑥].      (4) 

 

Comparing this formula to Eq. (2), we can conclude that 

the added Cg overall curvature results in: 

• an overall change in image intensity by a factor of 

(1−2LCg)−2 and, 

• the introduction of an equivalent surface-to-screen 

distance Lg as 

 𝐿𝑔 =
𝐿

1−2𝐿𝐶𝑔
, (5) 

instead of L. 

 

A global intensity change is evident since magnification 

is also changed. 

Slightly rearranging Eq. (5), Lg can be expressed as a 

reciprocal addition of L and −1/(2Cg), the latter quantity 

being the focal length of the sample’s mean surface 

interpreted as a spherical mirror. That is, a uniformly 

curved sample with a surface relief behaves as a flat 

sample with the surface relief "cascaded" with a curved 

mirror without a relief. Concave global curvature results 

in an increase of the equivalent L, while convex curvature 

decreases it. 

The effects of the global curvature on imaging (contrast, 

patterns etc.) can thus be assessed by looking at the 

behaviour of the intensity with changing L. However, as 

the imaging is nonlinear [14] in both L and the surface 

height profile, the actual behaviour depends on the relief 

pattern and the value of L. 

It is instructive to examine three special limiting cases. 

Two of them represent the two cases when one of the two 

members of the reciprocal sum expressing Lg is negligible 

compared to the other. 

• 2ǀCgǀ << ǀ1/Lǀ: The global curvature is negligible, there 

is no noticable effect on imaging. This regime for the 



doi: 10.4302/plp.v11i1.862 PHOTONICS LETTERS OF POLAND, VOL. 11 (1), 4-6 (2019) 

http://www.photonics.pl/PLP © 2019 Photonics Society of Poland 

6 

special case of a small surface relief was briefly discussed 

in Ref. [9]. 

• 2ǀCgǀ >> ǀ1/Lǀ: in this case the term 1/L is negligible (L 

is very large compared to the global curvature radius), 

thus Lg ≈ −1/(2Cg); that is, the resulting equivalent 

surface-to-screen distance will be independent of L. This 

results in the insensitivity of the projected screen pattern 

on the surface-to-screen distance (apart from the changing 

overall size); this feature is commonly observed [15] for 

ancient magic mirrors, since they are usually strongly 

convex. This limiting case was also discussed by Berry 

[8] but only for the special case of a small surface relief. 

This effect may also limit the sensitivity of Makyoh 

topography in a practical setting, as increasing L does not 

lead to an increase of sensitivity. 

• 2Cg = 1/L: the screen is in the focus of the mean mirror 

surface. The image is in close proximity to the 

(diffraction-limited) focal point, with the surface 

deviations appearing as reflections scatttered around. This 

case is not suitable for topographic imaging, since the 

spatial position of the scattering areas is lost. 

We stress finally that our analysis is valid for all surface 

shapes, since the original curvatures of the surface do not 

appear in the expression of Lg and no approximations are 

introduced. 
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