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Abstract—We study spatial soliton formation in a system with 

competing nonlinearities. In doing so, we consider a specific nonlinear 
response that involves both focusing and defocusing nonlocal 

contributions. We demonstrate that at a sufficiently high input power 

level, the interplay between these nonlocal nonlinearities may lead to the 
formation of in-phase, two-hump, fundamental spatial solitons. The 

conditions required for the existence of these two-peak spatial solitons 

are also presented. 
 

 

Spatial optical solitons are beams that propagate without 

spreading in nonlinear media due to a balance between 

diffraction and self-focusing.  Over the years, they have 

been observed and studied within the context of various 

nonlinear media with spatially local, nonlocal, Kerr-like, 

and saturable nonlinearities [1-5]. The growing interest in 

materials having spatially nonlocal nonlinearities stems 

from their ability in arresting the catastrophic collapse of 

finite size beams supporting the formation of stable 

solitons [6–11]. In general, fundamental solitons in any 

type of media, exhibit as a single peak or a bell-like 

shape. However, we have recently shown that the 

competition between nonlocal nonlinearities may lead to 

fundamental solitons with two peaks, otherwise called 

super-mode solitons [12-13]. We theoretically 

demonstrated the existence of such solitons in planar, 

nematic liquid crystal configurations. In such systems 

reorientational focusing nonlinearity is accompanied by 

thermally-mediated defocusing. Interestingly, in liquid 

crystal environments, the competition between these types 

of nonlinearities introduces two oppositely acting 

interactions through a multiplicative model.   

In this Letter, we consider the formation of multi-peak 

solitons in a simpler, and more general additive model for 

competing nonlocal nonlinearities, which could be 

applicable to a wider class of materials. We will also 

analytically present the necessary conditions these 

materials should satisfy for supporting this class of two-

hump solitons.       
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Fig. 1. (a) Normalized soliton solutions in the model of Eq. (1) with 

competing focusing and defocusing nonlocal nonlinearities as a function 

of beam power. Spatial intensity (grey area) and soliton phase (solid 
blue line) profiles for various normalized power levels are shown in b) 

𝑃 = 1 ∙ 103, c) 𝑃 = 5 ∙ 103. In our simulations 𝛾 = 0.6, 𝜎𝛼 = 5, 𝜎𝛽 = 4. 

 

We start by considering a scaled one-dimensional 

nonlinear Schrödinger equation that describes the 

nonlinear beam propagation of the electric field amplitude 

E(x,z):  

2𝑖
𝜕

𝜕𝑧
𝐸 =

𝜕2

𝜕𝑥2 𝐸 + 𝑓(|𝐸|2)E,                   (1) 

where the nonlinearity of the medium 𝑓(|E|2) has the 

following form 𝑓(|𝐸|2) = 𝛼(|𝐸|2) − 𝛽(|𝐸|2), where the 

self-focusing function 𝛼(|𝐸|2) of the intensity |𝐸|2, is 

given by: 

𝛼(|𝐸|2) = ∫ 𝑅𝛼(𝑥′ − 𝑥)|𝐸(𝑥′)|2𝑑𝑥′
+∞

−∞
,         (2) 
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while the nonlocal defocusing 𝛽(|𝐸|2) contributions are 

described by: 

𝛽(|𝐸|2) = 𝛾 ∫ 𝑅𝛽(𝑥′ − 𝑥)|𝐸(𝑥′)|2𝑑𝑥′
+∞

−∞
.         (3) 

 

Here  𝛾 is the relative strength of defocusing nonlinearity 

and the response functions  𝑅𝛼,𝛽 =
1

√𝜋𝜎𝛼,𝛽
𝑒

−
𝑥2

𝜎𝛼,𝛽
2

 are 

Gaussian with the unit norm ∫ 𝑅𝛼,𝛽𝑑𝑥 = 1
+∞

−∞
. The spatial 

extent (degree of nonlocality) of focusing and defocusing 

nonlinearities is represented by 𝜎𝛼 and 𝜎𝛽 , respectively.  

The stationary bright soliton solutions of the system of 

Eqs. (1-3) were then obtained numerically using finite 

differences and imaginary time methods [14]. To test the 

stability of these solitons we used Finite Differences 

Beam Propagation Methods (FD-BPM) involving the 

Runge-Kutta 4th order algorithm and evanescent field 

boundary conditions [15] so as to eliminate any 

reflections from the computational window. These results 

were also tested independently by employing split step 

Fast Fourier Transform methods. 

Our simulations indicate that this general additive 

model of competing nonlinearities supports the existence 

of bright spatial solitons and, in particular, super-mode 

solitons as long as the self-focusing process prevails. The 

corresponding soliton intensity profiles, are depicted in 

Fig. 1, as a function of the total power ( 𝑃 =

∫ |𝐸(𝑥)|2𝑑𝑥 )
+∞

−∞
. From here it is evident that for lower 

powers, the solitons are simply standard single-peak, bell-

like beams (Fig. 1b).These are formed in the regime 

where the focusing nonlinearity dominates. However, as 

the power increases, this medium starts to support the 

formation of two-peak solitons instead (Fig. 1c). 

It should be stressed that despite exhibiting a two-peak 

structure these self-trapped beams are not a higher-order 

or a bound state of two out-of-phase solitons [7]. In fact, 

they represent fundamental solitons having a constant 

phase distribution (see Fig. 1c). Additional simulations 

indeed confirm that these entities are stable during 

propagation and can survive acute collisions with other 

solitons. 

To understand better the phenomenon behind the 

formation of such multi-peak solitons one needs to 

analyze carefully the interplay between the focusing 

(𝛼(|𝐸|2)) and defocusing (𝛽(|𝐸|2)) terms. In Fig. 2, we 

illustrate the focusing and defocusing contributions to the 

nonlinearity (along the total nonlinearity  𝑓(|𝐸|2)) for a 

single-hump and a two-peak soliton, for certain input 

parameters. As we can see, for low powers, the 

defocusing part (𝛽(|𝐸|2)) is not strong enough compared

 
Fig. 2. Interplay between focusing (𝛼(|𝐸|2), blue area) and defocusing 

(𝛽(|𝐸|2), green area) contributions to the nonlinear response (𝑓(|𝐸|2), 

red area) for (a) single-peak and (b) two-peak soliton intensity 

distributions (indicated by the solid black line). Here 𝛾 = 0.6, 𝜎𝛼 =
5, 𝜎𝛽 = 4. 

 

with that from the focusing(𝛼(|𝐸|2)) contribution (see 

Fig. 2a) and, as a result, the nonlinearity 𝑓(|𝐸|2) has a 

smooth single peak profile supporting a standard, single-

hump soliton. The situation changes dramatically when 

the power is increased. In this case, the nonlinearity 

profile starts to flatten at the centre. For even higher 

powers, the interplay between focusing (𝛼(|𝐸|2)) and 

defocusing (𝛽(|𝐸|2)) leads to a more complex profile for 

the nonlinear response, having two maxima and thus 

supporting a two-hump soliton (see Fig. 2b). Using the 

waveguide analogy, these solitons are similar to the well-

known super-modes associated with linear and nonlinear 

waveguide arrays [16, 17]. However, here a super-mode 

soliton represents the fundamental nonlinear mode of the 

self-induced complex waveguide structure.  

   Next, it is important to identify the conditions required 

in this additive model for the medium to support two-peak 

fundamental solitons. First, the overall nonlinearity must 

be positive(𝑓(|𝐸|2) > 0), i.e. as a means to establish 

bright spatial solitons. If we assume, for simplicity the 

ansatz, that the soliton profile below and at the threshold 

can be represented by the Gaussian function 𝐸 = 𝐴𝑒
−

𝑥2

𝑤2 , 

then we arrive at the following condition:  

(1 + 2 (
𝜎𝛽

𝑤
)

2

) > 𝛾2 (1 + 2 (
𝜎𝛼

𝑤
)

2

) .              (4) 

 

Unfortunately, this relation involves the width (w) that is 

unknown in our solution. If we further assume that the 

nonlocality is weak (𝜎𝛼,𝛽 ≪ 𝑤), and by keeping in mind 

that we are in the focusing regime (Eq. (4)), we find that 

the strength of the defocusing nonlinearity should be in 

the range 0 < 𝛾 < 1. If we now consider the opposite 

regime, i.e., a highly nonlocal case, such that (𝜎𝛼,𝛽 ≫ 𝑤), 

from Eq. (4), we obtain: 

𝜎𝛽 > 𝛾𝜎𝛼.  (5) 
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Fig. 3. (a) Analytically predicted (𝜎𝛼 − 𝜎𝛽) domain of existence of two-

peak solitons, for different values of relative strength of defocusing 

nonlinearity 𝛾. (b) Comparison of soliton existence domain at selected 

values of 𝛾 found analytically (green) and numerically (red).  

 

Finally, since we are interested in the appearance of two 

symmetrically placed light  intensity peaks, the nonlinear 

index change is expected to exhibit a local minimum at 

x=0, i.e.
𝑑𝑓(|𝐸|2)

𝑑𝑥
|

𝑥=0
> 0 [13]. For our additive model, this 

leads to the following relation:   

                                 𝜎𝛽 < √𝛾3 𝜎𝛼 .                              (6) 

 

In Fig. 3a we demonstrate the domains where such two-

hump solitons exist in terms of nonlocality parameters 

(𝜎𝛼 , 𝜎𝛽) and relative strength of defocusing 𝛾. The blue 

and green regions correspond to single and two-peak 

solitons, respectively. These results were obtained using 

both analytical and numerical techniques. In fact, we 

verified their accuracy using numerical simulations of the 

exact model Eq. (1), for various degrees of nonlocality 

and various strengths of nonlinearities. These results are 

shown in Fig. 3b, where we observe a good agreement 

between our simple analytical formulas and numerical 

simulations. Clearly, the existence region for these two 

peak solitons as predicted analytically, is smaller than that 

found numerically. Moreover, to describe a single peak 

splitting at the threshold, we looked for a splitting in the 

nonlinearity rather that a splitting in light intensity. This 

implies that, even though the nonlinear response profile 

already exhibits two humps, it still does not guarantee the 

appearance of two-hump solitons. Nevertheless, this 

analytical approach provides good (as confirmed 

numerically) predictions concerning system parameters 

supporting super-mode spatial solitons. 

 

In conclusion, we studied theoretically the formation of 

fundamental bright solitons in media in the presence of 

additive competing nonlocal nonlinearities. To the best of 

our knowledge, we showed for the first time that stable 

two-hump super-mode spatial solitons exist in such a 

model. Additional simulations also indicate that this 

model supports not only two- but also multiple-peak 

solitons. Finally, we derived simple analytical formulas 

describing the existence domains of these two-peak 

solitons. 

 

Pawel S. Jung thanks the Polish Ministry of Science and 

Higher Education for Mobility Plus scholarship. This 

work was support by Qatar National Research Fund 

(Grant # NPRP 9-020-1-006) and Polish National Science 

Centre grant 2016/22/M/ST2/00261. 

 

References 
 

[1] G. Stegeman and M. Segev, Science 286, 1518 (1999). 

[2] Y. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic 

Crystals (Academic, San Diego 2003). 
[3] P. Varatharajah et al., Opt. Lett. 13, 690 (1988). 

[4] G. Assanto, M. Peccianti, IEEE J. Quantum Electron. 39, 13 (2003). 

[5] G. Assanto, ed. Nematicons: Spatial Optical Solitons in Nematic 
Liquid Crystals (Wiley, 2012). 

[6] O. Bang, W. Krolikowski, J.Wyller, J.J. Rasmussen, Phys. Rev. E 66, 

046619 (2002). 

[7] X. Hutsebaut, C. Cambournac, M. Haelterman, A. Adamski, K. Neyts, 

Opt. Commun. 333, 211 (2004). 

[8] C. Conti, M. Peccianti, G. Assanto, Phys. Rev. Lett. 91, 073901 (2003). 
[9] U.A. Laudyn, P.S. Jung, M.A. Karpierz, G. Assanto, “Quasi two-

dimensional astigmatic solitons in soft chiral metastructures,” Sci. Rep. 

6, 22923 (2016). 
[10] U.A. Laudyn, P.S. Jung, M.A. Karpierz, G. Assanto, Opt. Lett. 39(22), 

6399 (2014). 

[11] Y.V. Izdebskaya, V.G. Shvedov, P.S. Jung, W. Krolikowski, Opt. 
Lett. 43, 66 (2018). 

[12] P.S. Jung, W. Krolikowski, U.A. Laudyn, M. Trippenbach and M.A. 

Karpierz, Phys. Rev. A 95, 023820 (2017). 
[13] P.S. Jung, W. Krolikowski, U.A. Laudyn, M.A. Karpierz, 

M. Trippenbach, Opt. Expr. 25, 23893 (2017). 

[14] S. Jungling, J.C. Chen, IEEE J. Quantum Electron. 30, 2098 (1994). 
[15] P.S. Jung, K. Rutkowska, M.A. Karpierz, J. Comp. Science 25, 115 

(2018). 

[16] A.A. Hardy, W. Streifer, IEEE J. Lightwave Techn. LT-3, 1135 (1985) 
[17] M. Matuszewski, B.A. Malomed, M. Trippenbach, Phys. Rev. A 75, 

063621 (2007). 


