
doi: 10.4302/plp.2009.4.12 PHOTONICS LETTERS OF POLAND, VOL. 1 (4), 178-180 (2009) 

http://www.photonics.pl/PLP © 2009 Photonics Society of Poland 

178 

Abstract—The propagation of temporal pulses through nonlinear 
Kerr media with an initial supergaussian shape is described analytically 
and numerically. The analytical description is based on the canonical 
method. For a supergaussian profile as the trial function, the Euler-
Lagrange equations are derived and solved. Accuracy of the canonical 
description and it’s regime of applicability is discussed.   
 
 
In Kerr media the envelope U(z,t) of a pulse propagating 
along the z-direction satisfies the nonlinear Schrödinger 
equation (NSE) [1-3]: 
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where k2<0 is the group velocity dispersion coefficient, 
ε2>0 is the nonlinear permittivity, and the indices z and t 
mean differentiation over those coordinates. Although the 
NSE has many exact solutions (e.g. solitons of many 
types), frequently it should be solved approximately or 
numerically to describe the evolution of a signal of a 
chosen shape, even in the case of a simple gaussian pulse. 

One of most popular methods for obtaining approximate 
solutions of the NSE for a wide class of initial shapes is 
the variational (canonical) method [2-4]. In this paper this 
method is used to find an analytical description of the 
propagation of a supergaussian (SG) pulse: 
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of any variable order m(z) (for m(z)=m0=1 SG pulse 
becomes gaussian). Although a pulse of shape (2) is a 
useful for approximating a single “bit” of information 
propagating in signals, it is rarely considered in the 
literature [2,5], especially in nonlinear cases. Reference 
[5] analyses SG pulses of variable order m(z) and the 
effect of wave breaking occurring in highly nonlinear 
fibres. The method of moments was used in that work. 

To describe the main features of SG pulse propagation 
Eq. (1) is solved numerically for an initial field (2). Such 
a numerical solution can be obtained by means of the FD-
BPM method [6]. In Fig.1 are shown two different 
solutions corresponding to the same pulse power, namely 
an initial gaussian pulse m(0)=1 and a supergaussian 
pulse of initial order m(0)=2.5. They produce two 
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different scenarios of pulse propagation – infinite 
spreading in the left figure and oscillations in the right. 
These results depend only slightly on the initial pulse 
order – mainly they are determined by pulse’s initial 
height and width. 

  
Fig. 1.  SG pulse propagation in a nonlinear medium with k2=–1 ps2/km 

and ε2=0.25 nm/kV2. Left: initial height b(0)=12.5 kV/mm, initial 
width w(0)=128 fs, initial order m(0)=1, right: initial height 
b(0)=5 kV/mm, initial width w(0)=800 fs, initial order 2.5. For 
both cases the initial phase profiles is φ(0,t)=0. 

The important feature of propagation of both pulses 
considered in Fig. 1 is the change of their shape. It was 
found that after quite a short distance of propagation, the 
SG pulse, initially of order m(0)=2.5, evolves into a pulse 
better described by a lower order. Similar effects were 
observed for the gaussian pulse. In Fig. 2 we plot the 
pulse height, width and order as function of propagation 
distance z for an initial gaussian shape. The fitting was 
performed using the least squares method. The right 
figure shows an additional quantity – the standard 
deviation between the numerical solution and analytical 
approximation by a SG function of a variable order (pink 
curve) and the approximation by a gaussian function of 
constant order m(z)=1. This figure shows that the 
approximation based on a SG shape of variable order 
over the distance studied is 4 times better than the 
approximation using a gaussian function and the order 
itself decreases by more than a factor of two.  

To describe the observed behaviour analytically let us 
write the Lagrange and Hamilton density corresponding 
to Eq. 1 [2-4]. Using an amplitude r(z,t) and a phase φ(z,t) 
instead of a complex amplitude U(z,t) we have [7]:  
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Fig. 2.  Evolution of gaussian pulse parameters in anonlinear medium. 

Material parameters are the same as in Fig.1, pulse initial 
parameters as in the left part of Fig.1. 
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A parabolic profile for the phase function φ(z,t) with 
variable coefficient θ(z) describing its temporal curvature 
(chirp) is assumed. Moreover the real amplitude r(z,t) is 
the product of a height function b(z) and a shape function 
g(t) (satisfying the condition g(0)=1). Assuming that g 
depends on z via the pulse width w(z) and order m(z):  
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Integrating the densities (3) over time from –∞ to +∞ 
the following lagrangian and hamiltonian were obtained: 
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In the above expressions G1, G2, Gc and Gk are integrals 
of powers of the shape function and its derivatives: 
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Notice, that the dependence of the lagrangian and 
hamiltonian on order m is hidden in the coefficients (6) in 
which x=m(z). For a SG shape g(x)=exp(–x) and all 
integrals (6) can be performed. The results of integration 
are expressed by the Euler gamma function Γ(x):  
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Any generalized coordinate ξ satisfies the Euler-
Lagrange equation ∂L/∂ξ−∂/∂z(∂L/∂ξz)=0 [8]. For ξ=β: 
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Using the definition of G1, P is the power density: 
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Combining equations for ξ=b and ξ=w: 

 

2
2 2

2
1 1

2
2 2 2 2

2 4 2

4 5 ,
4

22 .
4

k

k

c c

k G G b
G w G

k G G bk
G w G w

εβ

εθ θ

2′ = +

′ − = − −

 (10) 

The remaining two Euler-Lagrange equations for ξ=θ 
and ξ=m are more complicated. To simplify them, define 
the following reduced dimensionless width J(z), and N(z) 
and D(z) as two combinations of the shape integrals (6):  
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Using the above definitions, the expressions are obtained:  
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Since N and D defined in (11) depend on z by means of 
m, the reduced width J has the same property. Therefore 
by combining equations (8)-(12) it is possible to express 
four functions β ′, θ, w and b in terms of the variable order 
m(z). A fifth equation describes the evolution of the pulse 
order. It is a second order differential equation which is 
more complicated than the other equations. But it is 
possible to integrate it once to obtain the same expression 
as given by the law of conservation of canonical energy 
H(z)=const (see [3] or [7]). The explicit form of equation 
resulting from this law of conservation is:  
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where H0 is a value of the hamiltonian obtained from 
initial conditions. Interpreting the first term in the left-
hand expression as a “kinetic energy”, the sum of two 
remaining terms can be treated as potential V(z): 
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Analogously to N, D and J, the potential V also depends 
on z by means of a SG pulse of order m. Observe that a 
solution of Eq. (13) exists only for 0H V≤ . 
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Since the potential V is an explicit function of the pulse 
order, the solution of Eqn. (13) can be written in the 
form:  
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Having m(z) allows the evolution of pulse width w(z) and 
height b(z) to be described by the following functions:  
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Unfortunately, the integration (15) required to obtain m(z) 
cannot be performed analytically. Nevertheless, many 
features of the evolution can be surmised from an analysis 
of the potential and pulse width and height as function of 
the SG order m. In Fig. 3 we plot two of these functions: 

  
Fig. 3.  Pulse height and potential vs. SG pulse order. 

First note that for negative ε2/k2 the reduced width J 
must be positive in order to obtain physical values of the 
height b. That is the reason why the function b(m) is 
broken into two branches divided by the gap 1<m< 
2.0963 where J(m)<0 (the forbidden regime for m<1/4 
appears because of the singularity in Gc(1/4)). Note also 
that the heights of pulses in the lower branch are much 
smaller than those in the upper branch. Consequently, the 
lower band pulses have widths much larger than the 
upper band ones. 

Since H0=const and 0H V≤  during the evolution, the 
potential V(m) changes between the initial value V(mi) 
and points at which V(m)=H0 or the boundaries of the 
band. Therefore one should expect oscillations of all 
pulse parameters for positive H0 and a monotonous 
change of them for negative H0 (left and right profile 
illustrated in Fig. 1 correspond to negative and positive 
hamiltonians). Unfortunately, during propagation the 
deviation of the pulse from a SG shape increases (Fig. 2) 
and at large z the description by the function (2) fails. 
Since deviations are much larger for the pulses of high 
initial order it is concluded that the method used can give 
a good description only for an initial order not greater 
than 1 and then only for a limited distance of propagation. 

The left side of Fig. 4 shows the numerically computed 
SG order m(z) given by the integral (15) for m(0)=0.98. 

The order decreases and values close to 0.25 are obtained 
at very large distances where the differences between the 
numerical and analytical profiles are quite significant. 
The right figure compares a few profiles of this pulse 
after propagation over the distance z=300 m (for the 
assumed k2, ε2 and field initial values, this corresponds to 
about 11 nonlinear lengths). It appears that a SG function 
of variable order approximates the numerical profile 
much better than a function of constant order m(z)=m(0). 
However its shape near the peak is visibly different. The 
fitting performed by the least squares method gives 
values m(z), b(z) and w(z) very close to values determined 
from (15) and (16), for example mfit=0.488 and mEuler-

Lagrange=0.504 (in Fig.4 these two shapes are almost 
indistinguishable). 

    
Fig. 4.  Left: evolution of order described by an Euler-Lagrange 

equation. Right: comparison of numerical and analytic solutions. 

To conclude, the canonical method applied to the 
propagation of SG pulses in Kerr nonlinear media gives a 
reasonably good analytical description when the order is 
less than 1. The changes in the pulse shape observed 
during numerical investigations of propagation over 
distances up to 20 nonlinear lengths can be described 
approximately by changes in the SG pulse order. In fact 
in a Kerr medium, regardless of the initial shape, the 
pulse during propagation transforms into a soliton and for 
a SG pulse its intermediate states can be described 
approximately by changes of the SG order quite well. 
Such a similarity appears in the regime of pulse 
spreading. However, when a pulse oscillates the 
differences are much larger. For pulses with high initial 
order the method discussed for the description gives only 
qualitative results, because the shape deformation during 
propagation is much larger.  
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