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Abstract— The evolution of a space-charge field during  
photorefractive two wave mixing in unbiased sample is considered. An 
approximate analytical solution describing the photorefractive material 
response to the interference pattern of arbitrary fringe contrast is 
presented. Obtained solutions are compared with the results of numerical 
simulations. 
 
 
The photorefractive (PR) effect relies on the refractive 
index changes induced by non-uniform illumination in the 
photoconductive and electro-optic material. The PR effect 
is commonly explained in the framework of the band 
transport model [1], which assumes photogeneration of 
free carriers, their transport and trapping in dark regions. 
The redistribution of carriers generates the space-charge 
electric field (Esc) inside the crystal. The material 
equations of this model are nonlinear and coupled, 
therefore they do not have an exact analytical solution in 
a general case. One of the most often investigated 
geometries is the two-wave mixing (TWM) configuration 
where interfering waves create a sinusoidal distribution of 
light intensity. Several methods of the space-charge field 
determination in such a case were developed. The 
majority of research is devoted to the study of steady state 
solutions. The dynamics of PR grating is essentially 
described in the frames of two approaches. For a small 
contrast of interference fringes, a linearization of material 
equations can be made. A high fringe contrast case is 
usually studied by means of numerical methods. To date 
very few attempts to find an analytical solution for the 
transient response of a photorefractive crystal have been 
taken. For example, an approximate analytical solution 
for space-charge field evolution given in [2] is valid only 
for the grating period much larger than the Debye length. 
In our paper we present an alternative time-dependent 
analytical solution applicable for arbitrary modulation 
depth of the interference pattern. The relationship that 
describes directly the grating formation dynamics in 
TWM geometry without external electric field was found. 
The applied approach is based on the idea presented in 
the work [3]. 
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We consider the band transport model with one type of 
charge carriers (electrons), and one photoactive donor 
level of dopants with concentration ND which are partially 
compensated by shallow fully ionized acceptors with 
concentration NA = NA

− = constant. In the considered case 
no external electric field is applied to the crystal, so the 
electron transport is caused only by diffusion. A 
photorefractive transport model is described by the 
following set of equations: 

 ∂ND
+/∂t = SI (ND − ND

+) − γND
+n, (1a) 

 ∂ρ/∂t = − ∂j/∂z, (1b) 

 j = qµnEsc + µkBT ∂n/∂z, (1c) 

 ∂Esc/∂z = ρ/ε, (1d) 

where n, ND, ND
+, NA are electron, donor, ionized donor 

and acceptor densities, respectively. S describes 
photoexcitation cross section, I - light intensity, γ -  
recombination constant,  j - current density, µ - electron 
mobility kB - Boltzmann’s constant, T - absolute 
temperature, ε = ε0εr an electric permittivity and 
ρ = q(ND

+ − n − NA
−) charge density. Additionally, we 

have the external condition:  
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The photorefractive response is induced by two plane 
waves creating an interference pattern of the form 

 I(z, t) = I0 [1 + m exp(iKz)+c.c.]θ(t),  (3)  

where I0 = I1 + I2 is the average intensity, m – the 
modulation depth, K = 2π/Λ -  the grating constant, and 
θ(t) − Heaviside’s step function.  

For the crystal length much bigger than the grating 
period Λ the periodic boundary conditions can be applied. 
In this case the condition (3) can be replaced by 
averaging over one grating period and all variables (ND

+, 
n, Esc) can  be expanded in the Fourier series: 

 
0

1
( , ) ( ) ( ) . . ( )

N
inKz inKz

n n
n n N

V z t V t V t e c c V t e
∞

= =−

= + + ≈∑ ∑  (4)  

Analytical solution for temporal photorefractive response in the 
diffusion regime 

Marek Wichtowski and Ewa Weinert-Rączka*

Faculty of Electrical Engineering, West Pomeranian University of Technology, al Piastów 17, 70-310 Szczecin 

 

Received December 14, 2009; accepted December 30, 2009; published December 31, 2009 



doi: 10.4302/plp.2009.4.09 PHOTONICS LETTERS OF POLAND, VOL. 1 (4), 169-171 (2009) 

http://www.photonics.pl/PLP © 2009 Photonics Society of Poland 

170 

where V0 represents average values, and Vn(t) = |Vn(t)|eiφn 
are complex amplitudes, φn reflects the fact that the 
variables distributions can exhibit spatial shifts in respect 
to the interference pattern. 

Substituting extensions (6) (for N components) to the 
set of equations (1a) ¸ (1d) and comparing the terms with 
the same exponential factor exp(inKz), one obtains 
equations for the amplitudes of successive harmonics. 
The form of these equations can be found in [2]. 
Numerical simulations carried out in our paper have been 
done using this system of equations. 

Characteristic temporal scales for evolution of space 
charge distributions can be determined by assuming small 
fringes contrast m<<1 and making linearization of 
material equations. For this purpose we substitute 
variables (4) limited to the first order terms to the 
equations (1), obtaining for zero order components  
ND0

+(t) ≅ NA (which arises from the fact that n << 
ND

+,ND
0) and an additional equation 

 dn0(t)/dt = SI(t)(ND − NA) − n0(t)/τe . (5) 

As can be seen, the average electron concentration attains 
the steady state value n0 = SI0(ND-NA)τe  in the time-scale 
determined by the carrier recombination time τe =1/(γNA). 
This time is much shorter than the space charge formation 
time, which means that in the case of abrupt light on-
switching, one can assume n0(t) ≈ n0. 

For the first order amplitudes the set of equations takes 
the form: 
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,(6a) 

where B = mSI0(ND − NA), Ed = (kBT/q)K is called the 
diffusion field and τdie = ε/σ0 = ε/(qµn0) is the dielectric 
relaxation time, which depends on the mean 
photoconductivity σ0 and the average life-time of ionized 
traps τ0 = 1/(γn0).. The space-charge field amplitude 
results from Gauss law (1d) 

 Esc(t) ≈ E1(t) = (−iq/εK)ND1
+(t).  (6b)   

To solve (6.1) one should note that free electron 
distribution n1(z,t) attains the quasi-equilibrium state with 
the space charge distribution ND

+(z,t) in very short time 
(of the order of τe) and follows the space charge changes 
with a negligible delay. This approximation allows to set 
dn1/dt = 0 in the first equation of (6a) and to obtain a 
solution of the set (6a) – (6b) in the form: 

 V1(t) = V1(∞)[1 − exp(−t/τ)].  (7a)  

Time constant describing the dynamics of the space 
charge grating formation is given by 

 τ = τdie(1 + K2LD
2)/(1 + K2LDb

2),    (7b) 

where LD i LDb denote respectively: the diffusion length 
given by K2LD

2 = µτEd, and the Debye screening length 
given by K2LDb

2 = Ed/Eq, with Eq = (q/εK)(ND-NA)NA/ND 
called the saturation field. The amplitude of the Esc field 
in a steady state is  

 E1(∞) = −im1Ed;    m1 = m/(1 + K2LDb
2), (7c)  

while the amplitude of electron density is n1(∞) = m1n0 . 

To find a solution for arbitrary fringe contrast we 
employ the continuity equation (1b): 

 ∂ρ(z,t)/∂t = − ∂j(z,t)/∂z.  (8a)  

Determining the charge density from Gauss’s law (1d), 
substituting into (1b) and integrating over z we obtain 

 ε⋅∂Esc(z,t)/∂t = − j(z,t) + j0(t).  (8b)  

The integration constant j0(t) can be found by taking into 
account the condition 〈Esc〉 = 0 and spatially averaging 
both sides of equation (8b), which results in j0(t) = 〈j(z,t)〉. 
In the diffusion transport case an average current is equal 
to zero, hence j0(t) = 0. 

In order to find an expression for j(z,t) we assume that 
in a transient state the profile of free carrier density 
remains quasi-sinusoidal: n(z,t) = n0 + n1(t)cos(Kz). 
Denoting conductivities of zero and first order by σ0 = 
qµn0 and σ1(t) = qµn1(t), equation (1c) takes the form: 

 j(z,t) = [σ0 + σ1(t)⋅cos(Kz)]⋅Esc(z,t) − σ1(t)Ed⋅sin(Kz).  (9)  

Substituting  (9) into equation (8b) one obtains 

ε⋅∂Esc/∂t + [σ0 +σ1(t)cos(Kz)]⋅Esc+σ1(t)⋅Edsin(Kz) = 0. (10)   

From (10) one can easily find the spatial distribution of 
Esc for the steady state. Taking into account that  σ1(∞) = 
m1σ0, where m1 is given by (7c) we get Esc(z) and its 
Fourier components: 
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In equation (10) the dependence σ1(t) is unknown. We 
assume that σ1(t) is approximately given by the same 
expression as linear solutions in (7a):  

 σ1(t) = m1σ0⋅[1 − exp(−t/τ)].  

In this case, for the transient process under the initial 
condition Esc(z,0) = 0, the solution of (10) is in the form 
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The dependence (12) enables one to determine the 
evolution of the space charge field profile, which is 
presented  in Fig.1. 

 
Fig.1. Space charge field distribution Esc(z,t) calculated from (12), for 
few values of  t  (10τdie, 20τdie, 30τdie, 50τdie and 300τdie). 

 

Harmonics amplitudes of Esc(z) can be found using the 
expansions:  
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and 
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where In(ξ) denote the modified Bessel functions of the 
first kind and n-th order. As a result, one gets complex 
amplitudes of the space-charge field: 

 En(t) = 2iHn(t)Ed, (14) 
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For t→∞ function Hn(t) tends to a value given by (11). 
The testing of H1(t) reveals that increasing fringe contrast 
increases the recording time of the grating, which is in 
agreement with experimental observations [4]. The time 
evolution of the first three harmonic amplitudes of Esc for 
the modulation depth m = 0.9 and material parameters 
listed in Table 1 calculated from (14) are presented in 
Fig.2. To asses the accuracy of expression (14) the 
solution was compared with the results of numerical 

simulations. In both methods the harmonics of higher 
order show slower growth rates and emerge with initial 
delay times in respect to the fundamental harmonic. 

 
Fig.2. Time dependence of the first three harmonic components of  Esc in 
the case of diffusion transport. Solid lines – the numerical solution, 
dashed lines – the analytical solution given by (14). The modulation 
depth is m = 0.9, the grating period is Λ = 10 µm, the dielectric 
relaxation time τdie ≈ 1µs. 

 

I. TABLE 1.  MATERIAL PARAMETERS FOR GAAS:CR 
Deep donor concentration ND = 1×1016 cm−3 
Acceptor concentration NA = 1×1015 cm−3 
Electron mobility µ = 6000 cm2/Vs 
Cross section of photoionization s =10−16 cm2; S = s/hν 
Recombination constant γ = 4×10−7 cm3/s 
Relative dielectric constant εr = 12.3 
Wavelength λ = 1.06 µm 
Grating period Λ= 10 µm 
Average light intensity I0 = 100 mW/cm2 

 
The approximate analytical solutions presented here 

permit to carry out fast simulation of temporal behavior 
of the photorefractive grating in a TWM experiment 
performed in a diffusion regime. The solutions exhibit 
features confirmed by experimental observations. 
Comparison with the numerical results confirms the 
validity of the approximate solutions at high modulation 
depth. 
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