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Abstract— Simulation of light beam propagation in chiral nematic 
liquid crystals, which are anisotropic media, requires the use of full-
vector methods. One of them is FV-BPM (Full-Vector Beam 
Propagation Method). In the present work an application of FV-BPM to 
simulate light propagation, in the linear case, is shown. Calculations are 
carried out for various values of incident beam full width at half 
maximum, position of the launched beam and the pitch of the 
cholesteric. 
 
 
Chiral nematic liquid crystals are the anisotropic media. 
As the pitch of the cholesteric is much greater than the 
wavelength, the birefringence axis has a different 
direction along the structure so scalar methods are not 
suitable. Only vectorial methods can be used for proper 
numerical simulations of light propagation in such 
structures[1]. One of them is FV-BPM (Full- Vector 
Beam Propagation Method). This method can be, for 
instance, used for determining parameters for which 
solitons[2-5] (in NLCs called nematicons[6]) are formed 
or to simulate light propagation in liquid crystalline 
waveguides. 

The algorithm bases on Maxwell equations: 
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We assume complex electric and magnetic fields. 

 

 
Fig. 1 Analyzed structure 
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In our work, chiral nematic liquid crystals are 
analyzed. Such structures have fixed anchoring 
conditions and the angle by which molecules are twisted 
changes linearly across the whole structure (see Fig. 1):  
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where θ -angle, 0θ -anchoring condition, P -pitch 
For the examined structure we assume electrical 

permittivity ε  in the following tensor form: 
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where
⊥−=∆ εεε || , θ - angle by which the molecules are 

twisted. 
After simple algebraic operations six complex partial 

differential equations are obtained which are solved using 
a finite difference method. The great advantage of 
vectorial methods is that we obtain the values of all 
electric and magnetic components so we have information 
not only about light intensity but also about polarization. 
In our simulations Dirichlet boundary conditions are 
used. It means that the electric and magnetic fields vanish 
at the edges. However, such boundary conditions have a 
serious disadvantage as they act as a reflecting surface - 
they are not so computing power consuming as TBC 
(Transparent Boundary Conditions) or PML (Perfectly 
Matched Layer)[7][8]. 

The material parameters used in simulations 
correspond to the 6CHBT nematic liquid crystal with a 
chiral doppant. Its ordinary and extraordinary refractive 
indices, at a temperature of 23°C, have the following 
values[9][10]: no=1,5144 ne=1,6714. In the following 
simulations we examine the structure of the cholesteric 
twisted through an angle of 360 degrees (see Fig. 1). The 
whole cell has 25μm or 50μm height and the light of a 
wavelength of 790nm is propagated along z axis. A 
Gaussian beam linearly polarized along y axis is launched 
into the structure: 
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where, 0E - amplitude, 
2ln220

FWHMw = - beam waist, 

Ω≈ε
µ=  376,73

0
0

0Z - impedance of vacuum [11]. 

Simulations were run for different position of launched 
beam and different FWHM. For all the following 
simulations (if not stated otherwise) 00 =θ , and the angle 
θ  is calculated form y axis. 

In general, when talking about y-polarized light,  the 
cholesteric in presented configuration can be described as 
a gradient waveguide with maximum refractive index at 
the center and gradually changing towards the edges. 
Starting from the center of the cell the refractive index 
decreases along the x axis and then increases and reaches 
its maximum at the edge.  

The first presented results show a beam launched 
centrally into the structure of the cholesteric rotated 
through an angle of 360 degrees. The light propagates 
along the z axis.  

 
Fig.2 Light propagation in the structure (50μm) rotated through an angle 
of 360 deg. - intensity in the cross section at z=0μm, and z=96μm for 
different beam width (a),(b) FWHM=2,5μm (c),(d) FWHM=12,5μm 

For the beam of FWHM=2,5μm diffraction can be only 
observed across the y axis and nearly no diffraction is 
observed across the x axis (see Fig. 2a,b ). It can be 
compared to the light propagation in a gradient 

waveguide. Light is guided in the area of a higher 
refractive index. For a higher width (FWHM=12,5μm) 
the beam diffracts along the y axis and focuses along the 
x axis (see Fig. 2c,d). It can be understood on the ground 
of the mode theory. For narrow beams only the 
fundamental mode is guided while for wider beams 
modes of higher order appear.  

In the previous example the beam was launched at the 
center of the cholesteric. In the following example the 
beam is launched non-centrally. FWHM of the beam is 
5μm. At first, the light moves to the center of the 
structure. It is reasonable as polarization coincides with 
the direction of the molecules at the center. In other 
words, for y-polarized light there is a higher refractive 
index. When the light reaches the center of the cell, it 
splits into two separate beams. It is so because the 
moving beam changes slightly its polarization and 
moreover, as in the previous example, it diffracts along 
the y axis.   

 
Fig. 3 Light propagation in the structure (50μm) rotated through an angle 
of 360 deg. Beam was launched non-centrally. Light intensity in cross 
section (xy plane) at z=0μm (left) and z=62μm (right). FWHM=5μm. 
Both graphs at the bottom are the tree-dimensional projections of the 
above results. 

When the structure is rotated 360 degrees with a 
perpendicular anchoring condition (θ0=90) the lowest 
refractive index is at the center and on the edges of the 
cell.  

In such a situation the light launched at the center splits 
into two separate beams and then returns back towards 
the center (see. Fig. 4). It is clearly visible that the 
propagation of light is similar to the reflection from the 
surface of a lower refracting index. In fact, the 
cholesteric, as mentioned before, can be considered as a 
gradient waveguide.  



doi: 10.4302/plp.2009.4.07 PHOTONICS LETTERS OF POLAND, VOL. 1 (4), 163-165 (2009) 

http://www.photonics.pl/PLP © 2009 Photonics Society of Poland 

165 

 

Fig. 4 Light propagation in the structure (25 μm) rotated through an 
angle of 360 deg. with perpendicular anchoring condition (θ0 =90°) Sum 
intensity xz plane (top), sum intensity yz plane (bottom). FWHM=5 μm. 

The simulations were also made for the beam launched 
at some angle (up to 45 deg.) to the x and y axis. The 
beam bounces from one side to another. It can be also 
described as the propagation in a gradient waveguide with 
reflections at the edges (See Fig. 5). 

 
Fig. 5 Light propagation when the beam is launched at some acute angle. 
Light intensity yz plane (upper left), xz plane (upper right), 3D plots of 
light intensity of the above planes (at bottom). 

All the simulations were carried out on the PC with 
Intel Pentium® IV 2,66GHz  and 1,5GB RAM. The time 
of computation at a distance of 100μm was up to a few 
hours. The resolution was set to 0,25μm along the x and y 
axes and to 0,01μm along the z axis (see Fig. 6). 

 

Fig. 6 Computation time (in minutes) in function of total points in the 
numerical grid.  

Summarizing, the Full-Vector Beam Propagation 
Method can be used to simulate propagation in 
anisotropic media e.g. in cholesterics. Using Dirichlet 
boundary conditions is sufficient enough and the 
calculations take up to a few hours. Using this method it 
is possible to determine the parameters important in an 
experiment and applications. The presented results show 
that the position at which the beam is launched is crucial, 
as non-centrally launched beams tend to split into 
separate beams. Moreover, the beam must have the 
accurate width as too large beams are launched into 
different layers. Last but not least, the beam launched at 
some acute angle bounces from one side to another and 
can escape form the cell, so it is also very important for 
the beam to be propagated directly along the z axis. 

 

References 
 

[1] G. D. Ziogos, E. E. Kriezis, Modeling light propagation in liquid 
crystal devices with a 3-D full-vector finite-element beam 
propagation method, Opt. Quant. Electron 40, 10 (2008) 

[2]  I-C Khoo Liquid crystals John Wiley & Sons, Inc (2007)  
[3] U. A. Laudyn, M. Kwasny, M. A. Karpierz Nematicons in chiral 

nematic liquid crtystals, Appl. Phys. Lett. 94, 091110 (2009) 
[4] U. A. Laudyn, M. Kwaśny, K. Jaworowicz, K. A. Rutkowska, M. A. 

Karpierz, G. Assanto Nematicons in twisted liquid crystals, Phot. 
Lett. Poland, 1, 7-9 (2009) 

[5] G. Assanto, M. Karpierz, Nematicons: self-localized beams in 
nematic liquid crystals, Liquid Crystals (2009)   

[6] G. Assanto, M. Peccianti, C. Conti, Optical spatial solitons in 
nematic liquid crystals Opt. Photon. News 14, 44, (2003) 

[7] J. P Berenger A perfectly matched layer for the absorption of 
electromagnetic waves,  J. Comp. Phys. 114, (1994) 

[8] D. S Katz, E.T. Thiele, A. Taflove Validation and extension to three 
dimensions of the Berenger PML absorbing boundary condition for 
FD-TD meshes, IEEE Microwave Guided Wave Lett. 4, (1994) 

[9] J. Baran, Z. Raszewski, R. Dąbrowski, J. Kędzierski and J. 
Rutkowska, Mol. Cyst. Liq. Cyst. 123 (1985) 

[10] R. Dabrowski, J. Dziaduszek and T. Szczuciński, Mol. Cyst. Liq. 
Cyst. 124, (1985) 

[11] http://physics.nist.gov/cgi-bin/cuu/Value?eqz0 
 

Computation Time

0

20

40

60

80

100

120

140

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Points

Ti
m

e 
[m

in
.]


