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Abstract—We discuss the use of a pair of phase masks, which have 

both radial and helical variations, for optically implementing a linear 

combination of two different types of wavefront aberrations. We show 

that by using two pairs of phase masks, one can combine symmetric and 

asymmetric aberrations. Some simple numerical simulations illustrate 

our proposed procedure. 

 

 

 For several optical applications it is convenient to have 

optical devices that can generate wave aberrations, with 

controllable aberration coefficients [1-2]. For this 

purpose, some authors have applied two phase conjugated 

masks; as proposed by Kitajima [3], Lohmann [4-7], 

Alvarez [8, 9] and Palusinski et al. [10].  

 Other methods incorporate two phase masks, which 

have phase variations expressible in terms of 

trigonometric functions of the polar angle [11, 12].  

Rather recently, some of us have suggested the use of 

vortex phase pairs, which have linear phase variations in 

the polar angle [13, 14]. In Table 1, we summarize these 

efforts.  

Table 1. Alternatives of phase angular variations. 

  

Here our aim to explore the use of two pairs of phase 

conjugated masks, working in tandem, for generating  

linear combinations of wave aberrations.  

In the next section, we discuss a method for generating 

linear combinations of symmetric wave aberrations. Then, 
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we explore a method for incorporating asymmetric wave 

aberrations, into the linear combination.  

 For our present discussion we employ the following 

notation. As depicted in Fig. 1, we consider that we have 

two pairs of free form, refractive elements. The first pair 

is imaged, with magnification M = −1, on the second pair. 

The Greek letters ρ and φ represent, respectively, the 

radial spatial frequency and the polar angle, at any of two 

conjugate planes. The cut-off spatial frequency is ρ = Ω. 

 

 
Fig. 1. Two vortex pairs in tandem. 

Therefore, in the following equations, we assume that any 

complex amplitude transmittance is located inside a 

circular aperture, which is represented by the binary 

function circ(ρ/Ω). This function is equal to unity inside a 

circle of radius ρ = Ω. Otherwise, the circ(ρ/Ω) is equal to 

zero. At the position of the first pair, the first element of 

this pair has the following complex amplitude 

transmittance 
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In Eq. (1), the Greek letter λ denotes the wavelength of 

the optical radiation. We have an aberration polynomial 

in the radial coordinate, aberration coefficients Um,o, 

which reach their maximum value at ρ=Ω, and φ=2π. The 

complex amplitude transmittance of the second free form 

element is 
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The complex amplitude transmittance of the second 

element is the complex conjugate of the first element. 

Next, we place together the two elements for setting the 

first pair. Then, we introduce an in-plane rotation (say by 

an angle α) between the elements of the pair. Hence, for 

the first pair, the complex amplitude transmittance is  
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It is apparent from Eq. (3) that the first pair generates a 

rotationally symmetric wavefront, with continuously 

variable optical path difference α.  Now, we consider that 

the same above analysis applies for the second pair; but 

now the wavefront aberration has a different polynomial 

expansion, and the value of the in-plane rotation angle is 

β. That is 
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 (4) 

 

Thus, the overall complex amplitude transmittance of 

both pairs, working in tandem, is  
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It is clear from Eq. (5) that we have obtained a linear 

combination of two wavefront aberrations, with 

weighting factors α and β. In Fig. 2 we illustrate our 

general result, by considering the generation of Zernike 

spherical aberration, say in the first pair. On the left-hand 

side of Fig. 2, we show the 3-D plots. On the right hand 

side, we display the contours of the phase delays.  The 

images along Fig. 2 a) describe the first term of Eq. (3), 

for α = 1, while the images along Fig. 2 b) describe the 

second term of Eq. (3), for α = 1. Along Fig. 2 c), we 

display the generated wavefront. 

 

 

 
 

Fig. 2. The generation of Zernike´s spherical aberration.  

Other possibility is obtained if in Eqs. (3)-(4) we set 
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Hence, the overall complex amplitude transmittance, in 

Eq. (5), becomes 
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 (7) 

Of course, there is a myriad of possible combinations, 

which are beyond our present scope. In what follows we 

incorporate the presence of asymmetric wavefronts, in the 

proposed linear combination.  

Now, for the sake of simplicity in our discussion, we 

consider that the complex amplitude transmittance of the 

first free form element, in the second pair, is  
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As before, for the second element of the first pair, the 

complex amplitude transmittance is the complex 

conjugate of equation 8. If we place together the two 

elements of the second pair, and we introduce an in-plane 

rotation between these elements, the complex amplitude 

transmittance is 
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It is apparent from Eq. (9) that by properly selecting the 

value of β, one is able to change continuously the 

aberration coefficient W m, n, by the factor 2 sin(nβ/2). 

In Fig. 3, we illustrate the generation of Seidel primary 

coma, m=1, n=1. 

 

 

 
 

Fig. 3. Same as Fig. 2 but for Seidel primary coma.  

 

 Finally, by taking into account the results in Eqs. (3) 

and (9), one can obtain that for the two pairs working in 

tandem, the overall complex amplitude transmittance is a 

linear combination of symmetric aberrations with 

asymmetric aberrations. The weighting factors are α and 

twice the value of sin(nβ/2). That is, 
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We recognize that another possibility is to generate 

different asymmetric aberrations, in each pair, and the 

obtaining a linear combination of two different 

asymmetric aberrations. 

 

 

 In conclusion, we have discussed an optical method for 

generating a linear combination of either symmetric or 

asymmetric wave aberrations. The proposed method uses 

two pairs of phase masks, which work in tandem. At each 

pair, the complex amplitude transmittance of the first 

element of the pair is the complex conjugate of the 

second element. After introducing an in-plane rotation 

between the elements of any pair, one can change 

continuously the weighting factor of a given wavefront. 

Since the two pairs work in tandem, then by 

superimposing the wavefronts of each pair, one can 

generate a linear combination of them. The weighting 

factors of the linear combination are related to the in-

plane rotation angles, which are represented by the 

parameters α and β. Hence, the weighting factors can be 

changed continuously. We have included some simple 

numerical simulations, for illustrating the proposed 

method.  
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