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Abstract—The paper analyzes the Gaussian beam (GB) evolution in 

nonlinear fibers in the framework of paraxial complex geometrical 

optics (PCGO). This method reduces the problem of Gaussian beam 

diffraction in inhomogeneous and nonlinear media to the system of the 

first order ordinary differential equations for the complex curvature of 

the wave front and for GB amplitude, which can be readily solved both 

analytically and numerically. As a result, PCGO radically simplifies the 

description of Gaussian beam diffraction and self-focusing effects as 

compared to the other methods of nonlinear optics such as: variational 

method approach, method of moments and beam propagation method. It 

is shown that the PCGO method readily supplies the solution of 

Nonlinear Schrödinger Equation (NLS) for self-focusing fiber with a 

focusing refractive profile. 

 

 

   A surprising feature of paraxial complex geometrical 

optics (PCGO) is its ability to describe the diffraction of a 

Gaussian beam (GB) [1]-[6]. Recently, the PCGO method 

has been generalized for nonlinear media of the Kerr type 

reproducing the basic results of classical nonlinear optics 

[7] and opening the way for further generalizations.  

The present paper studies the complicated behaviour of 

a GB in nonlinear and transversely inhomogeneous fibers 

in a very simple mathematical way. The paper presents 

GB evolution in nonlinear fibers of the Kerr type, where 

refractive effects and the phenomenon of initial curvature 

of the wave front are taken into account. Obtained 

solutions generalize the results of previous papers [8]-[14] 

in the scope of light beam diffraction and self-focusing in 

nonlinear fibers.  

 Let us consider the medium of cylindrical symmetry, 

which electric permittivity can be presented as a sum of 

linear and nonlinear part depending on the beam 

intensity 2
u  

            2

0 rrrrr ug NLNLL   .           (1) 

The permittivity profile in Eq. (1) models nonlinear 

optical fiber, where the parameter )0(0    is the 

permittivity measured along the fiber axis, r  is the radius 

vector in cylindrical coordinates, the function 

  22 / Lg r  models the refractive profile of the fiber, 

where the positive sign describes the defocusing medium 

and  
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the negative sign corresponds to the focusing fiber. The 

parameter 22 yx   is the distance from the axis z 

and the parameter L denotes  characteristic inhomogeneity 

scale. The positive value of the nonlinear part of the 

electric permittivity     2
rr uNLNL    corresponds to a 

self-focusing fiber and the negative sign of 

    2
rr uNLNL    describes the self-defocusing process.  

 For an axially symmetric wave beam in an axially 

symmetric nonlinear medium the PCGO method suggests 

a solution of the form 

     2

0 0 0( , ) exp exp ( ) / 2u z A ik A z ik z B z      
 

.  

(2) 

The real and imaginary parts of the complex curvature 

IR iBBB   determine the real curvature   of the wave 

front and the beam width w  correspondingly: 

0RB ,          
2

0
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BI 

,                   (3) 

where 
00 /2 k  and

0 is the wavelength of the beam in 

vacuum. The eikonal equation:  

   
2                         (4) 

in  ( , z) coordinates takes the form: 
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In accordance with paraxial approximation radius   

should be small enough. Therefore permittivity   ,z  in 

Eq. (5) can be expanded in a Taylor series in   in the 

vicinity of symmetry axis z:  
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Substituting eikonal from Eq. (2) and permittivity 

expansion (6) into eikonal equation (5) and comparing 

coefficients of  ,0  and 2 , we obtain the relations 
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and the Riccati equation for complex curvature B [6]: 

                   2

0 B
dz

dB .                         (8) 

Parameter   for an axially symmetric medium equals:  
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Substituting (3) in Eq. (2), we obtain a Gaussian beam of 

the form 
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Solution (10) reflects the general feature of PCGO, which 

in fact deals with Gaussian beams. The general form of 

the Gaussian beams in the 3D inhomogeneous media, as 

well as a general Riccati equation for complex curvature 

parameter B  can be found in [6] and in the review paper 

[3]. 

     In the framework of paraxial approximation the 

amplitude A=A(z) is complex-valued and satisfies the 

transport equation  

                                   0)( 2 Adiv ,                         (11)   

which for axially symmetric beam in ( , z) coordinates 

takes the following form.  
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In paraxial approximation assuming that   is small 

parameter equation (12) reduces to the ordinary 

differential equation in the form: 

00  BA
dz

dA
 .                       (13) 

The above equation for GB complex amplitude, as well as 

the  Riccati equation for complex curvature B are the 

basic PCGO equations. PCGO reduces the problem of GB 

diffraction to the domain of ordinary differential equation. 

Having calculated the complex parameter B from Riccati 

equation (8), one can readily determine complex 

amplitude A by integration of equation (13). As a result, 

the complex amplitude of cylindrically symmetric GB 

takes the form 

                   zdzBAzA exp0
,               (14)   

where  00 AA   is an initial amplitude and 
0/ zz  . 

 Riccati equation (8) is equivalent to the set of two 

equations for the real and imaginary parts of the complex 

curvature B . This set of equations together with (3) leads 

to the relation between the beam width w  and the wave 

front curvature   

 

0

1 dw

w dz
                         (15) 

and ordinary differential equation of the second order for 

GB width evolution, which for nonlinear inhomogeneous 

fibers of the Kerr type takes the following form 
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For nonlinear self-focusing fiber with a defocusing 

permittivity profile, Eq. (16) provides the following 

solution for GB width evolution: 
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(19) 

where 2

0
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8
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AwcnP   is the total beam power,  
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1
 is the critical power, 2

00wkLD   is the 

Rayleigh diffraction length and refractive index 
00 n .  

From Eq. (19) one can notice that when the total beam 

power is smaller than critical power 
CRPP    for both 

positive 00   and negative 00   curvature of the wave 

front, the GB width increases. When the total beam power 

is greater than the critical power and smaller than some 

characteristic power   




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width  still increases taking into account also the sign and 

the value of the initial wave front curvature. When the 

total beam power is equal to the characteristic power 



doi: 10.4302/plp.2012.1.10 PHOTONICS LETTERS OF POLAND, VOL. 4 (1), 26-28 (2012) 

http://www.photonics.pl/PLP © 2012 Photonics Society of Poland 

28 

  









2

02

2

11 L
L

L
PP D

CR    the solution (19) reduces to the 

form 




















Ln

z
Lww

0

00

2
exp11  .              (20) 

 

At last, when the total beam power is greater than 

characteristic power   



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L
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CR   the GB 

collapses regardless of the sign and value of the initial 

wave front curvature. For the case when 00   the 

characteristic power determines self-trapping power of the 

beam: 

            22 /1 LLPP DCR                               (21) 

for which one obtains a stationary solution. One can 

notice that self-trapping power (21) is greater than the 

critical power 
CRPP   due to the presence of defocusing 

refraction. 

 For self-defocusing fiber with a focusing permittivity 

profile Eq. (16) supplies the solution 
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From Eq. (22) one can notice that the GB is bounded for 

both sub-critical 
CRPP   and over-critical power  

CRPP  . For the case when 
DLL   and 00  , one 

obtains a stationary solution when the total beam power is 

equal to self-trapping power, which for the case of self-

defocusing fiber with focusing permittivity has the form 

      1/ 22  LLPP DCR
.                         (23) 

For self-focusing fiber with a focusing permittivity 

profile Eq. (16) provides the result 
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An identical analytical solution has been obtained for GB 

with the initially plane wave front 00   in the 

framework of NLS by the variational method approach 

[11]. From solution (24), one can notice that for the sub-

critical power 
CRPP   the GB is bounded for both: 

00   and 00  . For the GB power which is greater 

than the critical power 
CRPP   and smaller than the 

characteristic power: 

 

 22

01 DCR LPP  ,                       (25) 

 

the positive value of the initial curvature of the wave front  

00   eliminates the collapse effect. When the total beam 

power P  is greater than the characteristic power  

 22

01 DCR LPP   the GB always collapses. In the case 

when 00  , the presence of focusing refraction 

determines the self-trapping power, which is smaller than 

the critical power and is equal to: 

 

  22 /1 LLPP DCR  .                       (26) 
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