
doi: 10.4302/plp.2010.2.04 PHOTONICS LETTERS OF POLAND, VOL. 2 (2), 64-66 (2010) 

http://www.photonics.pl/PLP © 2010 Photonics Society of Poland 

64 

Abstract— The work presents a design method of capillary optical 
fiber (COF) geometry. A change of proportions in the capillary optical 
fiber drawn from a single preform or a set of crucibles is allowed on-line 
via the control of overpressure and thermal conditions in the outflow 
meniscus, which essentially lowers the manufacturing costs. Navier-
Stokes and Hagen-Poissuille equations, adapted to the COF pulling 
geometry, were solved. The velocity fields give solutions to other 
quantities of interest such as mass flow rate, pulling force and COF 
geometry, including controlled capillary expansion and collapse. The 
results for COFs are for the following dimensions: internal diameters 1-
100μm, external diameters 30-300μm, dimensional stability 1%. The 
major issue of the work is lowering capillary fiber fabrication costs. 
 

 

A capillary optical fiber (COF) consists of an annular 
ring-like high-index optical core around an air hole, a 
low-index optical cladding and a protective, high-index 
polymer jacket. Optical wave propagation in a COF 
depends on the geometrical distribution of an empty area 
in the cross section of the fiber and refractive index 
distribution near the glass-air boundary. The refractive 
structure of the cladding is uniform or has index 
depression around the core. Fabrication techniques of a 
discrete COF differ for pure or high silica glasses and soft 
glasses and include: an MCVD preform with incomplete 
collapsing, hollow core preform or pressurized multi-
crucible [1-9]. A fiber of outside diameter df is fabricated 
from a preform of outside diameter dp. 

Fiber geometry is created during the glass flow phase. 
The stationary dependence between the preform feed rate 
vp and the fiber pulling speed vf is vp=df

2vf/dp
2. During the 

transient phase this dependence is functional vpdp
2=fp(t), 

vfdf
2=ff(t). A high quality fiber requires the following 

condition to be fulfilled vpdp
2=vfdf

2=const, or for fiber 
tapering vpdp

2 = Cp = const, vfdf
2 = Cf = const. With a 

multilayered preform, the following condition is fulfilled 
Σ(i)vpidpi

2=Σ(i)vfidfi
2 [9]. Stationary condition means that 

the structure of a preform is imaged onto a fiber, 
assuming no shifts between glass layers. The above 
dependencies describe mass preservation while they do 
not include energy preservation. The whole system is 
fully described by the Navier-Stokes (N-S) equations. 
The diffusion-convection N-S state equations, 
transformed to fiber geometry presented in Fig.1, are  

ρ(r2
2-r1

2)(vt+vvz-g)=[3µ(r2
2-r1

2)vz+ξ(r1+r2)]z 
(r1

2)t+(r1
2v)z=(r2

2)t+(r2
2v)z=[por1

2r1
2-ξr1r2(r1+r2)]/µ(r2
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2) 

0.5(r2
2-r1

2)[ρcp(Tt+vTz)-k(Tz)z-σε’(Ta
4-T4)]=r2h(Ta-T) 
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where subscripts t and z mean function derivatives, t-time, z-
distance, r1=rw and r2=rz are internal and external radius of 
capillary, v-velocity, ρ-density, g-gravitation, μ-viscosity, po-
differential pressure, ξ-surface tension, cp-heat capacity, T-
temp., Ta-ambient T, k-heat conductance, σ-Stefan-Bolzman 
const., έ-material emissivity constant, h-heat transfer 
coefficient.  

 
Fig.1. Geometry of a COF outflow meniscus (not to scale). rpw-internal 

radius of a preform, rpz-external radius of a preform, L-length of a 
meniscus, vf-rate of fiber pulling, vp-preform feed ratio, v(z)-velocity 

function, Δri-local thickness of a glass layer. 

 Mass and energy flow is caused by the preform feed of 
radius rp with rate vp, meniscus heating, and fiber pulling 
of radius rf with rate vf. The simplifying assumption is 
rf<<L, equivalent to slow mass outflow from the 
meniscus and temperature stability of the system. 
Normalized solutions to N-S equations, in a form of 
velocity areas and derivatives – including temperature, 
mass flows and dimensions, are presented in Fig.2-4. 
Relative weights of the inertial gravitational surface 
tension and overpressure components are expressed by 
dimensionless numbers: Ri=Lvfρ/μ, Rg=gL2ρμvf, 
Rnp=ξL/μrcvf, Rop=Lpo/vfμ as well as capillary, Prandtl, 
Peclet and Biot. They can be calculated from the material 
and process data. The following ranges of the numbers 
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for a fiber pulling process are assumed: Ca=(102-104), 
Re=(1-10), Pr=(1-300), Pe=(1-103), Bi=(0,01-0,05). 
Bi=0,01 for thermally thin meniscus. This is usually not 
fulfilled, the Bi number is bigger and the meniscus is 
thermally thick (not isothermal).  

    

   

    
Fig. 2. Normalized parametric stationary solutions of the N-S equations 

for the meniscus region of a COF; (a) transformation of velocity v(z); (b) 
transformation of temperature T(z); (c) transformation of meniscus 

diameter. 

Isothermal and inertia-less simplification leads to 
uncertainties of the process modelling smaller than 10%. 
Assuming neither surface tension nor overpressure, the 
capillary is stationary. At high temperatures, with low 
surface tension, the viscosity dominates. Capillary 
collapsing depends on the ratio of ξ/μ and is more 

sensitive to vp than to vf. Capillary collapsing is facilitated 
by high T, low μ, low vp and long L. 

   
 

     
 

    
Fig. 3. Solutions to H-P equations for the COF pulling process. (a) Mass 

flow as a function of viscosity W(μ) for an external crucible nozzle 
diameter change in the range rt=(2.5-5)mm and pulling force F=1N. 
Surface tension in the upper meniscus assumed ξ=0.2N/m; (b) Mass 

flow as a function of the external nozzle diameter rt, process data 
µ=100Pa s, γ=0.2N/m, F=0.1N; (c) Change in the capillary diameter as a 

function of the pulling rate for a temperature around the optimum. 

Certain conditions favour the on-line changes of the 
COF geometry, thus, fabrication costs decrease. The 
sensitivity of the process to overpressure equals   
S=Lξ/μrpvplog(vf/vp). In the high temperature isothermal 
case, with large L and low vp, the S<<1, overpressure is 
an effective tool for geometry design. When S>>1 the 
system is too sensitive and the process is unstable. In a 
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practical process, the S is a function of μ, T, vp, vf/vp and 
rpw because L and ξ are almost constant. S increases for 
lower T, smaller rc, lower vp and vf/vp.  

Such intermediate in-process parameters of the COF 
geometry as: meniscus length L, distributions of meniscus 
shape r(z), velocity v(z), temperature T(z) are among 
solutions of the N-S equations. The results were 
presented for realistic parameters of the process in the 
available pulling set-up. Figure 2a presents the area of 
stable monotonic functional evolution of vp to vf. 
Individual velocity transformation curves for a particular 
process are within the grey area. Figure 2b presents 
solutions for a normalized distribution of T in the 
meniscus zone. The distribution of T is determined by the 
oven temperature, glass mass flow, viscous dissipation 
and laminar flow of inertial gas. Viscous dissipation may 
have a big influence on T in the lower parts of the 
meniscus. Fig.2c presents the evolution of a local 
diameter of the meniscus φ =dm(z). This function (which 
may have an inflection point) defines in which part of the 
meniscus the final form of a COF is determined. The 
location of an inflection point (or its absence) is a 
technological parameter. 

 
Fig. 4. Calculated and measured effect of capillary expansion (falling 
curve) or collapse (rising curve) r2/r1=f(T) during fiber pulling from 

eight different soft glass tube-in-tube COF preforms. 

 The N-S equations are supplemented with Hagen-
Poisseuille equations (H-P) to solve the proportions 
between the COF layers, which was presented in Fig. 4. 
The basic H-P equation is W=(πR4gΔp)/(8µLn))=-
S(dh/dt), where W-volume flow, R-nozzle diameter, Ln-
length of nozzle, S-effective surface of glass, h-height of 

fluid. The full set of H-P equations is:  
Wi=-Si(dhi/dt)=(πRi

4g/8µiLi)Σ(hiρi-hjρj) for (j>i), 
W=Σ(i)Wi, (d/dz)(W2/πdr2)=f(r,μ,ξ,ρ) [9]. It is assumed 
here that pulling force, gravity and surface tension 
dominate in the upper part of a meniscus (high T). The 
lower part of a meniscus (low T) is dominated by 
viscosity and reaction with inertial gas. Some solutions to 
H-P equations were presented in Fig.3 for eight different 
preforms. Preform data are published elsewhere [9]. 
 To obtain a COF of the proportions imaging the 
preform (Fig.4) the process parameters should be as 
follows: the hot region in the oven shorter, small L, the 
smallest allowed T for a core-depression-cladding set of 
glasses, feed rate of preform vp large – lowering locally 
meniscus temperature, a preform and a fiber should have 
large holes. To obtain a COF of proportions distant from 
the preform, the process parameters should be essentially 
reverse: the hot region in the oven longer, T high and 
changeable, vp small, a preform with a large hole, fast 
feedback in vf control, meniscus cooling with an inertial 
gas, overpressure in a preform.  

 
Fig. 5. Flase-color photo of end faces of COFs and one of its measured 

refractive index profile. COFs manufactured by the Dept. of Optical 
Fibers at the Białystok University of Technology. Courtesy of Prof. 

J.Dorosz. 
 Figure 5 presents the dimensional result changes in a 
COF fabricated from very similar multilayer preforms. 
Different fibers may be manufactured from a single 
preform, lowering the overall manufacturing costs. Very 
complex refractive structures may be manufactured too. 
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