
doi: 10.4302/plp.v17i1.1315 PHOTONICS LETTERS OF POLAND, VOL. 17 (1), 13-15 (2025) 

 

 

©2025 by the authors. This article is an open access article distributed under the terms and conditions of the 

Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

 

13 

Abstract—The paper presents an investigation of neural networks for 

temperature and relative humidity (RH) measurement by Rayleigh-based 

distributed optical fiber sensor (DOFS). The sensor consists of bare and 

polyimide-coated fibers placed side by side, ensuring different 
sensitivities to temperature and RH. Two neural networks have been 

thoroughly examined in sensor data processing: Multilayer Perceptron 

(MLP) and Convolutional Neural Networks (CNN). These models were 
assessed in terms of mean square errors (MSE) and training time. The 

MLP model achieves better results with lower training time compared to 

CNN. The proposed solution enables fast and automatic sensor data 
analysis after model training. 
 

 

Optical frequency domain reflectometry (OFDR) based 

on Rayleigh scattering enables relatively fast, high-

resolution distributed measurements along an optical fiber 

[1]. This technique exploits naturally occurring Rayleigh 

scattering, originating from the fiber's inherent 

microscopic inhomogeneities. Rayleigh-based OFDR 

utilizes swept-wavelength interferometry to generate 

interference patterns from Rayleigh backscatter at various 

points along the optical fiber. Variations in temperature 

and/or strain affect both the refractive index and the 

length of the fiber, causing a shift in the spectrum of the 

backscattered light. This shift is then analyzed 

to determine temperature and/or strain along the fiber [2]. 

Rayleigh-based OFDR has been demonstrated for 

measuring various parameters, including temperature [3], 

axial strain [4], and relative humidity (RH) [5]. Its high 

spatial resolution and distributed sensing capability make 

it attractive for applications such as structural health 

monitoring [6]. In the standard approach, multiparameter 

measurements using Rayleigh-based OFDR require 

manual analysis of sensitivities based on the type of 

optical fiber. This typically involves constructing 

a sensitivity matrix equation [7, 8]. In this case, the matrix 

relates the sensitivity of various fiber sections to physical 

parameters, as demonstrated in a study using standard and 

reduced-cladding fibers to measure strain and temperature 

in OFDR [8] simultaneously. However, the process of 

multiparameter prediction is both error-prone and time-

consuming due to its reliance on manual analysis. 

Machine learning (ML) has been explored in the context 
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of fiber optic sensors, such as fiber Bragg gratings [9, 10], 

interferometers [11, 12], and Rayleigh- or Brillouin-based 

distributed optical fiber sensors (DOFS) [13-15]. A linear 

regression model has been used to predict temperature 

and RH values in Rayleigh-based OFDR [15].  

To further explore ML techniques in distributed fiber 

sensors, we have studied, for the first time to the best 

of our knowledge, the use of neural networks (NNs) for 

predicting temperatures and RH in Rayleigh-based 

OFDR. In our approach, the selected NN models were 

trained using spectral shift values obtained from 

measurements performed on partially polyimide-coated 

and uncoated (bare) fibers arranged side-by-side. This 

paper focuses on evaluating the efficiency and comparing 

the performance, in terms of mean square error (MSE) 

and processing time, of two NN architectures: the 

Multilayer Perceptron (MLP) and the Convolutional 

Neural Network (CNN). Our results clearly demonstrate 

the feasibility of the proposed NN-based method for 

automated, accurate, and efficient multiparameter sensing 

without the need for manual sensitivity calibration. 

Initially, measurements were performed to create the 

dataset for the NN models using the setup presented in 

Fig. 1. 

 

 

 

Fig. 1. The scheme of measurement setup. 

The Rayleigh-based OFDR (OBR 4600, Luna 

Innovations) was connected to SMF-28 pigtails and then 

to the investigated fiber. The fiber used was a polyimide-

coated fiber, SM 1500 (7.8/125), produced by Fibercore, 

with a cladding diameter of 125 µm, and an overall 
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diameter (including the polyimide coating) of 155 µm. 

The investigated fiber consisted of bare and polyimide-

coated sections. In this approach, the bare fiber was 

sensitive only to temperature, whereas the polyimide-

coated fiber responded to both temperature and RH, 

as thoroughly investigated in one of our studies [16]. All 

measurements were performed in a controlled climate 

chamber (KMF 115, Binder). The measurements were 

conducted at temperatures ranging from 30 to 80 °C 

in steps of 10 °C and at RH values ranging from 20% 

to 70% in steps of 10%. A spatial resolution of 0.1 cm 

was set for the measurements. The spectral shifts along 

the fiber were recorded for all states within the measured 

temperature and RH ranges. An example of spectral shift 

values for the investigated sensor fiber at three different 

environmental conditions (50 °C, 40% RH; 60 °C, 50% 

RH; and 70 °C, 60% RH) is shown in Fig. 2. 

 
Fig. 2. The example of measurement results of spectral shift changes for 

three different environmental conditions (temperature/RH). 

All measured spectral shift values, corresponding 

to different temperature and RH conditions, were used 

as input data for the neural networks. The dataset consists 

of measurement files for each temperature and RH states, 

each containing spectral shift values and the 

corresponding positions along the fiber length.  

The first examined model was a fully-connected MLP, 

which is shown in Fig. 3.  

 

 

Fig. 3. The architecture of MLP. 

In this architecture, first described by Rosenblatt in 

1958, layers of processing units called neurons are 

connected in a feed-forward approach [17]. Each neuron 

first computes a linear combination of its input values 

with a vector of parameters called weights and then 

passes it to a non-linear activation function to capture 

more complex dependencies between inputs and outputs 

to the model. The outputs are temperature and RH values. 

The second architecture was CNN, presented in Fig. 4.  

 

 

Fig. 4. The architecture of CNN. 

CNN can be adapted for processing 1D signals, such 

as time-series data, audio signals, and sensor readings 

[18]. Unlike in image processing, where CNNs work 

on 2D grids of pixels, in the 1D context, the input 

is a sensor measurement along the fiber length, and the 

convolution operation is applied along a single 

dimension. The architecture of a 1D CNN typically 

consists of convolutional layers, a pooling layer, and fully 

connected layers. The convolutional layers apply 1D 

filters to the input signal to detect features such as peaks, 

trends, and periodic patterns. The pooling layer reduces 

the dimensionality of the feature maps by down-sampling, 

which helps retain the most important features while 

reducing computational complexity; common pooling 

methods include max pooling and average pooling. After 

the convolution and pooling operations, the extracted 

features are flattened and fed into fully connected layers 

identical to those of a typical MLP. 

For MLP, the following parameters were taken into 

consideration: number of hidden layers, number 

of neurons in hidden layers, activation functions, dropout 

probabilities, and for CNN, different kernel sizes, number 

of convolution layers channels, pooling layers, and 

number of neurons in fully connected layers. Data 

preprocessing included scaling data to a range (‒1, 1), 

data sampling, averaging, and applying margin (cutting 

sensor measurement points on both sensor edges). MSE, 

one of the most widely used metrics in ML, was selected 

to measure prediction errors. The experiment was based 

on nested cross-validation. In each of the five outer folds, 

approximately 20% of (temperature, RH) pairs were 
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included in the testing set, and leave-one-out cross-

validation (LOOCV) was performed on the remaining 

pairs to choose the model with the lowest MSE value 

in the current outer fold. The values of hyperparameters 

for the training process, which have been selected 

empirically, are presented in Tab. 1. 

Table 1. Hyperparameters values used in NN models. 

Hyperparameter name Value 

Batch size 32 

Number of Epochs 100 

Learning rate 0.01 (MLP); 0.001 (CNN) 

Optimizer Adam 

 

The performed comprehensive experiments for MLP 

suggest that the preferable network configuration consists 

of 2 hidden layers, ReLU (rectified linear unit) activation 

function, and no dropout applied. Best models typically 

rely on a number of features from ranges 5-8 and 14-20 

for temperature and RH, respectively. Scaling input data 

to a range (-1, 1) significantly improved the results. 

  

In the case of experimental results for CNNs, deeper 

networks were preferred. The networks with 4-5 

convolutional layers and 3‒4 fully connected layers 

performed the best. However, data scaling before passing 

through the network was shown to be ineffective. 

 

Based on the results for MLP, the MSE values for 

temperature fluctuated between approximately 0.02 °C 

and 0.17 °C, while the MSE for RH changed from 3.04% 

to 11.55%. Based on the results for CNN, the MSE values 

for temperature fluctuated between approximately 0.22 °C 

and 2.08 °C, while the MSE for RH changed from 3.53% 

to 9.19%. MLP performed better with temperature 

prediction than CNN, while at the same time, RH 

predictions were comparable.  

MLP model training time was approximately 0.5 s while 

CNN training time was approximately 8 s ‒ 54 s. From 

this, it can be concluded that a simpler neural network 

architecture results in shorter training times and that 

expanding the architecture (by adding more hidden layers 

or convolutional layers) does not automatically translate 

into better prediction results.  

 

This paper presents a study on neural networks for 

measuring temperature and RH in Rayleigh-based OFDR. 

CNN and MLP models were thoroughly investigated for 

their potential application in fiber sensors. The results 

reveal that MLP models achieve better or comparable 

results to CNN, with very short training times below 1 s, 

which is significantly lower than those of CNN. This new 

approach undoubtedly shows superior advantages over 

conventional methods by automating the prediction of 

parameters based on raw data and enabling fast 

processing. 
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