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Abstract—Optical fiber sensors using low-coherence interferometry 

require processing of the output spectrum or interferogram to quickly 

and accurately determine the instantaneous value of the measured 

quantity, such as temperature. Methods based on machine learning are a 
good candidate for this application. The application of four such 

methods in an optical fiber temperature sensor is demonstrated. Using a 

ZnO-coated sensing interferometer and spectral detection, the sensor is 
intended for monitoring lithium-ion rechargeable batteries. While the 

performance of all methods was good, some of them seem to be better 

suited for this application. 
 

 

Rechargeable lithium-ion batteries have become the 

power source of choice in consumer electronic devices, 

transportation, and grid-scale energy storage [1]. In 2022, 

there were about 6.6 billion smartphone users worldwide, 

resulting in about 7 billion lithium-ion battery cells being 

used in this application only [2–3]. E-cigarettes are 

another popular consumer product using rechargeable 

lithium-ion batteries, with 68 million users worldwide [4]. 

In these applications, the key advantages of 

rechargeable lithium-ion batteries are high energy density, 

relatively long lifespan, and lack of cadmium, lead, and 

nickel in the battery cells. Consequently, these batteries 

are lighter, smaller, and more environment-friendly 

compared to other rechargeable battery types [5]. 

Some failure mechanisms of rechargeable lithium-ion 

batteries can result in an explosion or fire, with material 

losses, injuries, or even fatalities ensuing [6–9]. Thermal 

runaway is one of these batteries' most critical 

catastrophic failure mechanisms, necessitating the 

monitoring of the temperature of individual battery cells 

(in any given device) [10–11]. 

Optical fiber sensors are a good choice for this 

application, especially in higher-voltage batteries made 

from non-conductive, chemically inert materials.  

 

The layout of the interferometric optical fiber 

temperature sensor used in this research is presented in 

Fig. 1a. The sensor employs a superluminescent diode 

(SLD) having a central wavelength of 1310 nm as the 

broadband light source. A microsphere-based sensing 
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interferometer, shown in Fig. 1b, is used. As the detection 

setup is based on an optical spectrum analyzer (OSA), the 

sensor's output is a spectral characteristic of intensity, 

shown in Fig. 1c. Further processing of this spectrum 

yields the measured temperature.  

 

a) 

 

b) 

 

c) 

 

Fig. 1. Optical fiber sensor of temperature: a) sensor layout, b) sensing 

interferometer, c) example output spectra. 

A more detailed description of this sensor is available in 

[12–13].   

 

When analyzing interferograms created during fiber-

optic head measurements, manual methods prove to be 

insufficient, as they are labor-intensive and error-prone. 

Machine learning (ML) methods are potentially capable 

of effectively determining the temperature from the 

collected data.  

The temperature was measured with the system 

described above. We managed to collect 3710 samples, of 

which two-thirds were the teaching dataset, and one-third 

were the test dataset. 
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The first step was to allow machine learning algorithms 

to analyze interferograms, determining all the features the 

future model would consider during learning. For this 

purpose, the data was de-noised using the IIR (Infinite 

Impulse Response) filter, and all peaks on the 

interferogram were determined. In addition to general 

statistics, features were also determined for the five 

highest peaks on the interferogram.  

Four different machine learning algorithms were 

compared: KNN (k nearest neighbors) – algorithm 

classifies a new sample based on its k nearest neighbors, 

assuming they belong to the same class. Decision Tree - It 

is a tree structure in which internal nodes contain tests on 

attribute values. The number of branches at each node is 

equal to the number of possible test results at that node. 

Leaves store information about the sample's class. The 

method involves cyclic division of learning vectors 

according to selected criteria. Random Forest - It is built 

of multiple decision trees, each tree built on a different, 

randomly selected subset of the learning dataset. The 

majority selection decides the searching trees. Neural 

Network (multi-layer perceptron) - Includes three types of 

layer input, output, and hidden. Network learning is 

possible through backward error propagation. 

During classification, algorithms using learned models 

assign successive interferograms to a specific class. The 

process is based on probability, so assigning the wrong 

class is possible. The statement that a given interferogram 

is in the right class is not always sufficient, hence using 

the following terms. True Positive (TP) - If the model 

correctly predicts the positive class, i.e., the temperature 

is within the specified range and has been classified as 

positive. True Negative (TN) - if the model correctly 

predicts the negative class, i.e., the temperature is outside 

the specified range and has been classified as negative. 

False Positive (FP) - if the model incorrectly predicts the 

positive class, i.e., the temperature is outside the specified 

range and has been classified as positive. False Negative 

(FN) - if the model incorrectly predicts the negative class, 

i.e., the temperature is within the specified range and has 

been classified as negative. 

The following metrics were used to determine the quality 

of the models: 

 

Accuracy A is the ratio of the number of correct 

predictions to the total number of predictions, calculated 

as: 

 TP TN
A

TP TN FP FN

+
=

+ + +
. (1) 

Recall R – measures the ability of the model to detect 

positive samples and is calculated as the ratio of the 

number of positive samples correctly classified as 

Positive to the total number of Positive samples, i.e.:  

 TP
R

TP FN
=

+
, (2) 

while precision P is defined as: 

 TP
P

TP FP
=

+
. (3) 

F1 is the harmonic average of R and P, given by [14]:  

 1 2
R P

F
R P


=

+
. (4) 

A high F1 score means that the model can detect positive 

samples, and all the positives found are True Positive 

[14]. 

 

AUC – The higher the AUC, the better the model 

performs in distinguishing between positive and negative 

classes.  

 

Two predictive models were created. The first model 

assumed a lower temperature limit of 35°C and an upper 

limit of 85°C. The second model differed in the upper 

limit value, which was 200°C. The data was classified 

into three classes. The first class is below the lower limit, 

the second is between the lower and upper limits, and the 

last is above the upper limit. 

 

 

Fig. 2. Confusion matrix for 35°C–85°C. 

Figure 2 and Figure 3 show the results of the TP, TN, FP, 

FN indicators. The lighter color means that more samples 

have been classified into a particular class. We are 

interested in having the bright spots appear only on the 

diagonal from the upper left corner to the lower right 

corner. All other fields mean that the model has made a 

wrong classification. After carefully analyzing both cases, 

we see that the worst-performing algorithm was KNN, 

while the best was Random Forest. 
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Fig. 3. Confusion matrix for 35°C–200°C. 

Table 1. Summary of results for KNN and Decision Tree. 

 

Table 2. Summary of results for Random Forest and Neural Network. 

 
  

The results of the individual metrics for each algorithm 

are comparable for both temperature limits. As seen in 

Table 1 and Table 2 the Random Forest algorithm has 

very high accuracy for both cases. In addition, it scores 

very well in the F1 and AUC metrics. Using the Random 

Forest algorithm makes it possible to create practical 

applications using photon sensors to measure temperature. 
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