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Abstract—The analytical expression for the group index in a 

degenerated three-level lambda-type atomic system is derived as a 

function of the parameters of laser fields and an external magnetic field. 
The influence of an external magnetic field on the group index is 

investigated. It is shown that by changing the magnitude or sign of an 

external magnetic field, as well as the transparency window with normal 
dispersion switches to enhanced absorption with anomalous dispersion 

at the line center, light propagation can be converted between 

subluminal and superluminal modes. 
 

 

Today, group velocity control of a light pulse in a 

dispersive medium has attracted considerable attention due 

to its potential applications in many fields such as quantum 

memories, high-speed optical switches, optical 

communications, and quantum information processing [1]. In 

general, group velocity can be controlled via dispersion of 

the atomic medium.  

In recent years, it has been demonstrated that quantum 

interference and atomic coherence lead to interesting 

phenomena in quantum optics such as electromagnetically 

induced transparency (EIT) [2], electromagnetically induced 

absorption (EIA) [3], and so on. The EIT can deliver a 

normal dispersive medium with very steep dispersion [4], 

while the EIA can create an anomalous dispersive medium 

[5]. Under the EIT and EIA conditions, several theoretical 

and experimental studies of subluminal [6÷7] and 

superluminal [8÷10] propagations of light have been done. 

Especially, for EIT materials, one can easily control light 

propagation between subluminal and superluminal modes by 

adjusting the intensity, frequency, polarization, and phase of 

laser beams [11÷15]. Recently, many investigations have 

focused on the utilization of an external magnetic field to 

control the EIT effect [16÷18] and light propagation 

[19÷20].  

In this work, we suggest using an external magnetic field 

as a “knob” to control the group velocity between the 

subluminal and superluminal values in a degenerated three-

level lambda-type atomic medium. An analytical expression 

for the group index is found as a function of laser parameters 

and external magnetic field. The influence of a magnetic 

field on the group index is investigated. It is shown that by 

changing the magnitude or the sign of a magnetic field, the 

group velocity can switch between subluminal and 

superluminal values. 
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The degenerated three-level atomic system in an 

external magnetic field is represented in Fig. 1(a). A weak 

probe field Ep with angular frequency ωp drives the 

transition |1|2. A strong coupling field Ec with angular 

frequency ωc couples the transition |2|3. Here, the 

probe light is the left-circularly polarization σ-, while the 

coupling light is the right-circularly polarization σ+. The 

external magnetic field ( B
r

) is arranged so that its 

direction is parallel to that of the propagation direction of 

the probe and coupling beams. This is to remove the 

degeneracy among the ground-state sublevels |1 and |3 

via the Zeeman effect as shown in Fig. 1(b). The Zeeman 

shift of the |1 and |3 levels is determined by 

B B F FBm g =h  , where B  is the Bohr magneton, Fg  is 

the Landé factor, and F 1m =   is the magnetic quantum 

number. We use 21 and 23 to denote respectively the 

decay rates from the |2 state to the |1 and |3 states, 

while 31 is the relaxation rate of atomic coherence 

between the |1 and |3 states by collisions of atoms. 

 
Fig. 1. (a) The three-level lambda system without an external magnetic 

field. (b) The three-level lambda system with an external magnetic field: 

the |1 state is lowered, while the |3 state is lifted by the same amount 

B equal to the Zeeman shift. 

 

The evolution of the system in laser fields is described 

by the density matrix equations as follows: 
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23 c B 23 c 22 33 p 13[ ( + )] ( )
2 2

i i
i     = − −   +  − − & , (1e) 

31 31 p c B 31 p 32 c 21[ ( 2 )]
2 2

i i
i    = − −  − −  +  − & , (1f) 

*

nm mn = , (1g) 

11 22 33 1  + + = . (1h) 

where 
21 23 31( ) / 2   = + + ; Δp = ωp – ω21 and Δc = ωc 

– ω23 are respectively the frequency detuning of the probe 

and coupling fields; the Rabi frequency of the probe and 

coupling fields are represented by Ωp = d21Ep/ћ and Ωc = 

d23Ec/ћ with dmn being the electric-dipole moment of the 

transition |m|n. 

By solving the density matrix Eqs. (1) in the steady-

state / 0t  = , we found the solution for 21 under 

weak-probe approximation as: 

(0) (0)
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31 p c B

( )
2

( / 2) 4
( )

( 2 )

i
i

F
i

i

 



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 − − 
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
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, (2) 

where 

 

2

c
p B

31 p c B

( / 2)
( )

( 2 )
F i

i





= −  −  +

−  −  − 
. (3) 

and we assumed that the atoms are initially in the ground 

states |1 and |3 with the same populations,
(0) (0)

11 33 1/ 2   , and (0)

22 0  .
  

The susceptibility
 
 for the probe beam is proportional 

to 21 as follows: 

 

p21 21
21

0 p 0 p

2
2

iNd Nd

E E F
 

 


= −  . (4) 

where N is the atomic density and 0 is the vacuum 

permittivity. After extracting the real and imaginary parts 

of the susceptibility , we obtain: 
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with A and B determined by 
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Thus, the absorption () and dispersion (n0) coefficients, 

which are related to the real and imaginary parts of  , are 

given by: 
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The group velocity of the probe light is defined by  

 

g

g

c
v

n
= , (10) 

here c is the speed of light in the vacuum and ng is the 

group index which is determined as 
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with A′ and B′ are respectively the derivatives of A and B 

over p, we have: 
222
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Now, we use the analytical results to 87Rb atomic 

medium. The states |1, |2 and |3 are respectively 5S1/2(F = 

1, mF = +1), 5P1/2(F = 2, mF = 0), and 5S1/2(F = 2, mF = ‒1). 

The atomic density N = 4.5×1017 atoms/m3, 21 = 23 = 5.3 

MHz, d21 = 1.610-29 C.m. The Landé factor is gF = ‒1/2, 

and the Bohr magneton is B = 9.27401×10-24 JT-1. For 

simplicity, the parameters in frequency units are 

normalized in . In this way, the magnetic field strength B 

is also normalized by a constant c B Fγ / ( )g = h . For 

example, when taking the Zeeman shift B = 0.5, then 

the magnetic field strength 
B B F FB / ( )m g=  h = 0.5c. 

 
Fig. 2. Variations of absorption (a) and dispersion (b) versus probe 

frequency detuning when c = 2, c = 0 and B = 0 (solid line), B 

= 0.5c (dashed line) and B = ‒0.5c (dash-dotted line). 

 

Figure 2 shows the variations of the absorption () and 

dispersion (n0) coefficients versus the probe frequency 

detuning p for different values of magnetic field B = 0 

(solid line), B = 0.5 (dashed line) and B = ‒0.5 (dash-

dotted line), and the coupling field parameters c = 2 

and c = 0. From Fig. 2(a) we see that when the magnetic 

field is absent, i.e., B = 0 (which corresponds to ΔB = 0), 

the position of the transparency window is localized at the 

line center of the absorption profile. However, when the 

external magnetic field is switched on, the transparency 

window has moved to the left by an amount of p = 1 for 

the case of B = ‒0.5c (which corresponds to ΔB = ‒0.5) 

and moved to the right by the same amount p = 1 for 

the case of B = ‒0.5c (which corresponds to ΔB = 0.5). 

At the same time, a strong absorption peak appears at 

resonance frequency. This means that the medium is 

switched from transparent to absorbed regimes and vice 

versa.  
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Along with the transition between EIT and EIA, the 

dispersion is also switched from normal to abnormal 

regimes in the resonant region via turn-on/off of the 

external magnetic field, as shown in Fig. 2(b). Thus, the 

external magnetic field can be used as a “knob” to convert 

light propagation between superluminal to subluminal 

modes, as depicted in Fig. 3. In Fig. 3, we plot the group 

index versus probe frequency detuning p for different 

values of the external magnetic field B = 0 (solid line), B 

= 0.5c (dashed line) and B = ‒0.5c (dash-dotted line) 

while the parameters of coupling field are c = 2 and c 

= 0. It shows that the positive peak of the group index at 

p = 0 when B = 0 has switched to the negative peak 

when B = 0.5c. Otherwise, the negative values of the 

group index at p = 1 when B = 0 has switched to the 

positive peak with B = 0.5c or B = ‒0.5c. 

 
Fig. 3. Variations of the group index versus probe frequency detuning 

when B = 0 (solid line), B = 0.5c (dashed line) and B = ‒0.5c (dash-

dotted line). Other parameters are c = 2 and c = 0. 

 

 
Fig. 4. Variation of the group index via magnetic field when p = 0, c = 

0 and c = 2. 

 

Figure 4 shows the variation of the group index versus 

the magnetic field at two-photon resonance p = c = 0 

and c = 2 , which corresponds to the positive peak of 

the group index at p = 0 when B = 0. From Fig. 4 we can 

see that both the magnitude and the sign of the group 

index are varied according to the magnetic field.  

We have found the analytical expression for the group 

index of a degenerated three-level lambda-type atomic 

medium in the external magnetic field. The effect of the 

magnetic field on the group index has been investigated. 

It has been shown that the magnitude and the sign of the 

group index are changed by the magnetic field. This 

means that the magnetic field can be used as a “knob” to 

convert the medium response between 

electromagnetically induced transparency and 

electromagnetically induced absorption, and switch light 

propagation between subluminal and superluminal modes.  
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