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Abstract—Digital holography, and especially digital holographic 

interferometry, is a powerful approach for the characterization of 
modifications at the surface or in the volume of objects. Nevertheless, 

the reconstructed phase data from holographic interferometry is 

corrupted by the speckle noise. In this paper, we discuss on recent 
advances in speckle decorrelation noise removal. Two main topics are 

considered. The first one presents recent results in modelling the 

decorrelation noise in digital Fresnel holography. Especially the 
anisotropy of the decorrelation noise is established. The second topic 

presents a new approach for speckle de-noising using deep convolution 

neural networks. 
 

 

Digital holography is a powerful approach for remote 

metrology at different scales (micro and macro) [1]. 

Holographic interferometry provides an optical path 

difference in the wrapped modulo 2 phase. The phase is 

connected to the scene/object/structure of interest and can 

be helpfully considered for many industrial purposes: 

roughness measurements [2], surface shape profiling [3], 

surface deformation [4] or vibration measurements [5]. 

Holographic interferometry has the benefit of being 

contact-less and provides full-field measurements. In 

addition, the use of light illumination makes it non-

intrusive. High temporal resolution can be obtained when 

using high-speed cameras [5]. For example, holographic 

interferometry is adapted for the investigation of 

fundamental properties of transient mechanical waves 

propagating in complex metamaterials [6]. The use of 

long wavelength infrared radiations enables large 

deformation measurements, which are of interest for 

extended structures [7], by providing desensitization pf 

holographic measurements by a factor of almost 20 [4]. 

From the practical point of view, the change in the 

optical phase from digitally reconstructed holograms is of 

interest and is obtained within modulo of 2. Basically, 

the speckle pattern produced from the object surface 

under coherent illumination is modified as well as 

changes from its initial state. It follows that the phase 

from holograms is also speckled. Therefore, speckle 

decorrelation noise is included in phase changes and 

advanced filtering is required to get noise-free phase 

maps [8–9]. Recently, noteworthy progresses in the 
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understanding and modeling of the image-to-object 

relationship in holographic imaging has been obtained 

[1]–[12]. However, digital holographic interferometry is 

still limited by the requirement of fast data processing. 

For that, two main directions must be investigated: first, 

full modelling of speckle decorrelation noise and last, 

artificial intelligence (AI) [10] as a new paradigm to boost 

the computation time in digital holographic data 

processing.  

Recently, we have addressed the first point and 

proposed modelling of speckle decorrelation in digital 

holographic interferometry [11]–[12]. For that, a complex 

coherence factor between two speckled images from two 

digitally reconstructed holograms is of interest and 

described by: 
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where A1 and A2 are the two considered digital 

holographic images from the reconstruction algorithm 

(discrete Fresnel transform or angular spectrum transfer 

function). The coherence factor is linked to the standard 

deviation of speckle noise according to [13] (for |µ|0.7): 
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and that is why modeling |µ| is of main interest in 

expected development of future model-based de-noising 

algorithms. The computation of Eq. (1) must consider the 

point spread function of digital holography [14] which 

includes the sensor area (Npx, with the N number of pixels 

and the px pixel pitch), the pixel surface width (x), the 

wavelength of light () and the initial object-to-sensor 

distance (d0). Then, experimental parameters under study 

can be related to the spatial frequencies produced by the 

object in the particular case concerned. As an example of 

our recent results, in the case of surface deformation 

measurement (mechanical loads, vibrations, thermal 

loads, pneumatic loads), we demonstrate that |µ| has the 

expression in Eq. (3): 
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In Eq. (3), Ux=Npx/d0 is the cut-off spatial frequency of 

Fresnel holography, sinc(x)=sin(x)/x and rect(x) is the 

rectangle function. The same relation holds for the y 

direction. The value of |µ| must be evaluated at the spatial 

frequency equivalent to the local slope of surface 

deformation [11]. Consequently, the speckle decorrelation 

noise is anisotropic and depends on both the dimensions 

of the sensor area and the local orientation of the fringes 

generated by the local surface slope of the deformation 

between the two holograms (refer to Fig. 1). This new 

result provides new opportunities for advanced de-noising 

methods in digital holographic metrology. Indeed, prior 

knowledge related to surface deformation could be used 

for predicting local noise and for processing adaptation. 

This would be very useful for high-speed holographic 

imaging because, in such a process, the number of pixels 

of the sensor is reduced and the decorrelation noise is 

stronger than in classical experiments. 

 

Fig. 1. Comparison between theory and experiments, (a) theoretical 

values of |µ|, with the dashed blue line for the vertical fringes, the 

dashed red line for the horizontal orientation and the dashed green line 
for the inclined one, (b) comparison between experimental estimations 

of |µ| and theoretical values in the case of the horizontal fringes, (c) 

comparison between experimental estimations of |µ| and theoretical 
values in the case of the vertical fringes (d) comparison between 

experimental estimations of |µ| and theoretical values in the case of the 

45° fringes; from [11]. 

For the past 10 years, artificial intelligence (AI) and 

deep learning based on convolutional neural network have 

emerged as very efficient tools in signal and image 

processing with applications in speech and language 

understanding, or image recognition. It has now impacted 

digital holography for computer-generated holograms 

[10]. Soon, deep learning will probably strongly influence 

digital holography and its related post processing 

approaches. Especially, there is great interest in AI 

methods because they may strongly decrease the 

processing time for de-noising phase maps. Recently, we 

have demonstrated that the two-dimensional windowed 

Fourier transform (WFT2F) is the state-of-the art of 

speckle noise removal in speckle metrology [15] (refer to 

Fig. 2). The main drawback is a relatively long processing 

time to deal with phase maps including 1024×1024 data 

points. 

 
Fig. 2. Ranking of de-noising algorithms from the point of view of the 

standard deviation of the phase error; from [15]. 

To overcome such a limitation, we developed an 

approach based on deep learning [16]–[17]. One solution 

to improve de-noising with deep learning is to go deeper 

and to add more layers to the network. Despite higher 

capacity, overfitting and vanishing or exploding gradients 

arise as two main problems. The latter can be controlled 

by batch normalization and the use of skip connections 

such as in residual networks. But, to avoid overfitting 

even with regularization techniques, the amount of data is 

critical. Data augmentation generally helps in artificially 

increasing the amount of training data. Considering that a 

close relation does exist between the network depth and 

the size of convolutional filters (and the receptive field, 

consequently), the question of the depth requirement has 

not been thoroughly investigated.  

The generalization power of machine learning 

algorithms is the “ability to perform well on previously 

unobserved inputs”. To do so, data are usually split into 

training, development, and test sets, with the latter 

consisting of unobserved noisy phase data. 

In our first approach [16], we trained a DnCNN (deep 

convolutional neural networks) for speckle de-noising in 

holographic phase data. The network reaches good 

performances with the benchmark data in comparison to 

other de-noising techniques such as BM3D, DTDWT or 

WFT2F. That was demonstrated for most of the evaluated 

phase data [16]. In our last developments, the aim is to 

reduce the training time while reaching similar 

performance. To do so, databases for development and 



doi: 10.4302/plp.v13i4.1126 PHOTONICS LETTERS OF POLAND, VOL. 13 (4), 73-75 (2021) 

http://www.photonics.pl/PLP © 2021 Photonics Society of Poland 

75 

validation were specifically designed and developed [17]. 

The main result is that a pre-trained model is not required 

unless the diversity and amount of simulated data are not 

consistent. In this case, the lack of data may be 

compensated by the pre-training. The experiments also 

demonstrated that very deep networks are not mandatory 

to use, and that four convolution blocks produce good 

performances when compared with WFT2F. Note that the 

advantage of reduced networks is the fact that they are 

fast to train. This study also addressed the issue of  

networks generalization. The paper [17] shows that the 

WFT2F algorithm continues to be the best one for phase 

images including strong noise (refer to Fig. 3). However, 

the baseline of WFT2F can be outperformed with our best 

model when considering experimental data. The deep 

learning approach was applied to experimental data from 

vibroacoustics based on on-line digital holography with a 

high-speed camera (refer to Fig. 4) and yielded excellent 

results compared to those provided by a scanning 

vibrometer [18]. 

 
Fig. 3. Ranking of de-noising algorithms from the point of view of the 

standard deviation of the phase error; DL: our approach with deep 

learning; from [16]. 

In the future, we aim at investigating a multiplicative 

model. Improvement of speckle de-noising could be 

reached by combining the advantages of the two 

approaches and mixing in a noise estimator. To increase 

the amount of training data, we aim at implementing other 

data augmentation functions. Finally and additionally, a 

new database with an increased diversity of fringe images 

would be a matter of importance in learning the networks 

with a large diversity of phase fringe patterns. 

 

 
Fig. 4. (a) noisy phase map from the experiments in vibroacoustics, (b) 

de-noised phase processed from our deep learning approach; from [17]. 

References 

[1] P. Picart (ed.), New techniques in digital holography (John Wiley 

& Sons, 2015). 

[2] T.M. Biewer, J.C. Sawyer, C.D. Smith, C.E. Thomas, Rev. Sci. 
Instr. 89, 10J123 (2018). 

[3] M. Fratz, T. Beckmann, J. Anders, A. Bertz, M. Bayer, T. Gießler, 

C. Nemeth, D. Carl, Appl. Opt. 58(34), G120 (2019). 
[4] M.P. Georges, J.-F. Vandenrijt, C. Thizy, Y. Stockman, 

P. Queeckers, F. Dubois, D. Doyle, Appl. Opt. 52(1), A102 (2013). 

[5] E. Meteyer, F. Foucart, M. Secail-Geraud, P. Picart, C. Pezerat, 
Mech. Syst. Signal Process. 164 (2022). 

[6] L. Lagny, M. Secail-Geraud, J. Le Meur, S. Montresor, 

K. Heggarty, C. Pezerat, P. Picart, J. Sound Vib. 461 114925 
(2019). 

[7] L. Valzania, Y. Zhao, L. Rong, D. Wang, M. Georges, E. Hack, 

P. Zolliker, Appl. Opt. 58, G256 (2019). 
[8] V. Bianco, P. Memmolo, M. Leo, S. Montresor, C. Distante, 

M. Paturzo, P. Picart, B. Javidi, P. Ferraro, Light: Sci. Appl. 7(1), 

1 (2018). 
[9] V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, B. Javidi, P. Ferraro, 

Light. Sci. Appl. 5(9), e16142 (2016). 

[10] R. Horisaki, R. Takagi, J. Tanida, Appl. Opt. 57(14), 3859 (2018). 
[11] E. Meteyer, F. Foucart, C. Pezerat, P. Picart, Opt. Expr. 29(22), 36180 

(2021). 

[12] M. Piniard, B. Sorrente, G. Hug, P. Picart, Opt. Expr. 29(10), 14720 
(2021). 

[13] P. Picart, S. Montresor, O. Sakharuk, L. Muravsky, Opt. Lett. 
42(2), 275 (2017). 

[14] P. Picart, J. Leval, J. Opt. Soc. Am. A 25, 1744 (2008). 

[15] S. Montresor, P. Picart, Opt. Expr. 24(13), 14322 (2016). 
[16] S. Montresor, M. Tahon, A. Laurent, P. Picart, APL Photonics 

5(3), 030802 (2020). 

[17] M. Tahon, S. Montresor, P. Picart, Photonics 8(7), 255 (2021). 
[18] E. Meteyer, S. Montresor, F. Foucart, J. Le Meur, K. Heggarty, 

C. Pezerat, P. Picart, Sci. Rep. 11(1), 1 (2021). 


