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Abstract—Interaction is considered of bright solitons of different
orders and two different wavelengths propagating in a medium focusing
for one wavelength and defocusing for the other. The system of
nonlinear Schrodinger equations is solved by means of perturbation
theory. The application of an additional postulate to adjust both widths
of the solitons and to modify the amplitude by a factor determined by
the overlap integral greatly improves the accuracy of the description.
Good accuracy of description is confirmed by numerical calculations.

In nonlinear optics, the coupled nonlinear Schré din ger
equations have beenformanyyears the main tool for
studyingthe interactions of solitons with eachother and
with the medium through which they pass [1-6]. In this
paper, we consider a nonlinear medium focusing fora
wave at one frequency and defocusing foranother and the
description of interaction between two suchwaves.

Considertwo beams Upos(X,z) and Uneg(X,Z) interacting
with a nonlinear medium of nonlinearity:
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for a, >a, >0- The Nonlinear Schrodinger Equations

(NSE) describing the propagation of beams have the
form:
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This case was considered by manyauthors [4,6-10] and
discussed using differentattitudes —analytical [1,4, 7, 9],
numerical [10] orvariational [6, 8].

Butthe simplest solutionof Egs. (2) describesthecase
of vanishing field Uneg. Normalizingthe wa ve function
Uros together with the coordinates (x, z) gives NSE in its
fundamental form:
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The series of solutions of Eq. (3) can be obtained via
Inverse Scattering Transform (IST) [4]. They represent
solitons of different ordersn=1,2,... The function ¥, is
a quotientof two complex combinations of nterms ofthe
form exp (27, (x—x,) +2in’ (z-2,) )with arbitrary real 7,
Xoi, and zai (I = 1,..n). The coefficients 7 determine the

widthsand heights of its individual components.
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A system of equations like Egs. (2) forfe=pn =1 and
focusingnonlinearity forboth beamsapr=1,on=-1 has
an analytical solution known as Manakov solitons [4,
10-14]. Based on Manakov's solution, an analogous
solution of thesystem [Eqs. (2)] for focusing-defocusing
nonlinearity has been discussed in [4]. Both fields Upos
and Unegare described by solitons of thesameorder, but
unfortunately this solutionexists only forthe special case
whereap=an=1and fe=pn=1.

The considered system of Eqgs. (2) generalizes this case.
To obtain Manakov-typesolution we should introduce
additionalamplitude factors ypes and yneg:

U DSZ}/ OSIPn7
UP ~ P lP (4)
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Assume the real ypos and yneg (their phases are included
into initial phase factors of Wn). Substituting Egs. (4) into

Egs. (2) we can provethatEqg. (3) is satisfiedonly for:
:BP: :BN =1
aPypzos _aNyl\%eg =1

The requirement (4) implies that solitons of the both
fields Upos and Uneg havenotonly thesame order n, but
the centra xo of all their correspondingcomponents for
Ipos = Ineg =1,.. N have thesame positions. In addition, for
any pairof componentindices l;andl.the initial phase
differencesn?z,,— 32, are the same for both fields.

In this paperwe solve the systemof Egs. (2) applying
perturbationtheory. This attitudeis frequently applied to
describe various effects connected with interaction
between solitons or with the medium [1, 5]. Although the
Uneg field will notalwaysbe smallrelative to Upes, let us
treatitinitially asa small perturbation. Expressing both
fields as series with respect to a small constant quantity o
of order of magnitude Uneg we have:
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Neg

The unperturbed field Up(® satisfies the first equation of
the system (2) with vanishing Uneg. Its solutiondescribes
a soliton of arbitrary order n:

UP(x,2) =y, (x,2), (7
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with y(© denoting the same symbolasin Egs. (4) and (5),
but written for vanishing Uneg. For n = 1 this solution
gives:

U(o)_ 7(0)‘}'1 — A,ei(kf’”"’*’")Sech(anx), (8)

with ko= 27218,  am=2n,/\Ja, =27,y . The initial
phase gop isarbitrary.

By substituting the expansion (6) into the system (2), we
prove that the first-order correction vanishes Up®® =
while Uy satisfies the equation:
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The equation forthe Neg field Uy® is linear. I ts solution
gives a functionwith a profile like U, but it may havea
differentpropagatingterm:

UP(x,2) =ae™ U (x,z), (10)

Nevertheless, substituting (10) into Eq. (9), we prove that
it i?osatisfied only fortwo cases: 1) fn=fp, Ak=00r 2)
Up®@ =, and Of particular
interest is the second case nq‘?/\%/gﬁ t st"c?Iltong Urosand
Uneg Can correspond to two differentwavelengths.

But one can also consider solutions of Eq. (9), where
instead of a true distribution of the refractive index
derived from the nonlinearity an|Us|? we substitute a
distribution that is close, but slightly different. Assume
that this slightly different distribution is given by:

U (x,2)[ ~U? = A’Sech? (2,x),

+a UPPUP=0

11)

The parameter #q can slightly differ from one of the
numbers #pa...nen, defining n-th order soliton (7), but the
relation between Agand s are assumedthe same as the
first-order soliton:A, = 27, /,/a, . Moreover, to minimize
deviation from the z-axis during propagation,assume an
approximately symmetrical shape of the solitonlu \” (x, z)|
in the whole range of propagation.

The approximation (11) gives the solution of Eq. (9):
U= r{Jew U, = Aje™ Sech(21,x), 12)

with ¢ _ 2,2 15 butarbitrary amplitude ;™ (or Ax) of
Uneg field (the multiplier before Uqis for consistency with
designations in expressions (4)).

The first non-vanishing correction Up® for Upos field
satisfiesa muchmore complicated equation:
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Nevertheless, assuming Un® of the form (12) and:

UP=y? o, UO (14)
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we are able to findthe solution of Eq. (13) for real yn(®
and y»@. Substituting (12) and (14) into Eq. (13) gives the
condition for theexistence of this solution:
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The obtained perturbed solutions of Egs. (7)-(15)
contain at least one case of different propagation
constants fn#fe, butalso coverthecase of Manakov-
type solution, Eqgs. (4)—(5). To compare results following
from thesetwo attitudes, we should assume equal S and

Pr,asin Eq. (5). Nowwe can see thattreating Vreg =07

(15)

asa smallquantity we have:

1+aNyNeg 1 (71(\11))

R

Since the obtalned second-order correction in expansion
(16)is identicalas (15), the conclusionsfrom the exact
Manakov-type solution (4)-(5) and the perturbation theory
(7)—(15) are the sameforthe samechoice of parameters.
But the perturbation theory gives more possibilities to
change the parameters of the interacting solitons.

By now the amplitude term y* is arbitrary, because Eq.
(9) is linear. To establish this term let us define the
overlap integral Q calculated usingtheinitial field shapes:

[T 1060 [ Uy (x,0) [ dx
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Of course, 0 < Q < 1. During propagation the Neg
soliton and central peak of the Pos soliton equal their
widths. The amplitude of the Uneg field will decrease or
increase, dependingon therelation between nnvand ne.
Butits poweralways decreases to Q*of theinitialpower
(Uneg Field is much smaller than Upqs, S0 the power carried
by Pos soliton hardly changes). This gives the rule
enablingusto determinethe amplitude of Uneg field:

Vo= =704 0%® (16)

(17)

ULRRTY (18)
N

Of course, both solitons should retain their energy, as
proved in [9]. But in the process of adjusting theirwidths
some of thewaves quickly escape outside the region of
interaction. Thus, thereduction in powerapplies only to
the fields thatremain in the system stillinteracting with
each other.

To check the obtained results numerically we assumed
op =1, an=0.25, fp =1 and fn=0.8. As the input Upos
beamwe tooka third-order solitonwith the central peak
correspondingto ne =3 at z-axis (xe10=0) and two side
peaks approximately twice higher than thecentral peak.
Uneg beamat the input contained the first-order soliton
defined by parameter v =10 with amplitude 2/3 height
of the central Pos peak. Theotherinitial parameters have

Ug =lim|U,, (0.2)|=Q (0,0)].

Neg
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been adjusted to obtain the side peaksclearly separated
from the central maximum. Forthesevaluesinthe input
plane on the x-axis we have, |u, f~0.7q, Uy
which means that at the beginning of propagation the Uneg
beam reducesthe nonlinear susceptibility over 3 times, so
the interaction of solitons cannogape considered weak.

6.03

Y 2

|UP(0.2)]

1U;.(0.2)]

598+ 160+
4 100 200 300 400 500 0 100 200 300 400 500

Z r4
Fig. 1. Central heights of Upes and Uneg fields during propagation over
the distance zk=500. Upos(0,0)=6.03, Uneg(0,0)=1.8.

In Fig. 1 we can see how the central heights of both
solitons change during propagation. Note that the heights
of the two fields initially decrease, but aftera distance of
about 70, fairly regular oscillations of both amplitudes
remain in the systemwith a smallrelative amplitude of
3.4-10-*for Upesand 5 times less for Uneq. Moreover, we
can see that the amplitude of the Neg soliton changes
rapidly at the veryinitial stage of propagation.
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Fig. 2. The change of power of the propagating Neg field (left) and
comparison of the initial and final profiles (right).

Analogous behaviour can be seenfor the power Myeg =
J";UN (x,z) [ dx of the Neg soliton (left graph of Fig. 2).
On the otherhand, in the right graph one canobserve that
the profile of the Negfield and the central peak of the Pos
field agree very well (the Pos field is scaled to obtain the
same central heights). Adjusting Sech functionto the final
profile of bothbeams, we find 7¢=2.9686, which is 1%
less than the assumedvalue 7> =3 forthe initial central
peak. Forthe initial shapes of both considered solitons,
we obtain Q=0.7894, which gives the estimated value of
power with a fairlygood 1%accuracy (thered line). Using
the obtained 774, one cancalculate y)w® =0.2874and yp?
=0.0103, whichgivesthe final height of the Negsoliton
drawn by the red line in the right graph of Fig. 1
(accuracy 0.2% nevertheless is a significant change) and
the final height of the Pos soliton drawn by the blackline
in the left graph (accuracy 0.01%).

Of course, the accuracy of the method increases for
closervalues of the central widths (closer 77r and 7n). But
it is also important tohave a clearly marked peak in the
centre of the Pos soliton field distribution. In Fig. 3 we
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show the final fields for the initial central peak height
equal 0.3 (the leftgraph)and 0.25 (the right graph) of the
side peaks. Allother parametersare the same. Inthe left
graph one canhardly distinguish deformations (however
both final fields lost their symmetry), but in the right
graph we can see that propagation became unstable — the
Neg field is no longer guided by Pos soliton.
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Fig. 3. Deformations of the final profiles of Neg solitons.

In conclusions, using the perturbation theory we have
foundsolutionsin the form of a pair of solitary beams
with different orders, propagating in the focusing-
defocusing medium. The proposed method gives very
good quantitativeresultsand calculated beamsarestable
atlongdistances. Similar multi-hump solitons have been
reported recently, however, in a nonlocal nonlinear

medium [13-15].
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