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Abstract—Interaction is considered of bright solitons of different 

orders and two different wavelengths propagating in a medium focusing 

for one wavelength and defocusing for the other. The system of 
nonlinear Schrödinger equations is solved by means of perturbation 

theory. The application of an additional postulate to adjust both widths 
of the solitons and to modify the amplitude by a factor determined by 

the overlap integral greatly improves the accuracy of the description.   
Good accuracy of description is confirmed by numerical calculations. 
 

 

In nonlinear optics, the coupled nonlinear Schrödinger 

equations have been for many years the main  tool f o r 
studying the interactions of solitons with each o ther a nd 
with the medium through which they pass [1‒6]. I n  this 

paper, we consider a nonlinea r medium focusing for a 
wave at one frequency and defocusing for another and the 

description of interaction between two such waves. 

Consider two beams UPos(x,z) and UNeg(x,z) interacting 

with a nonlinear medium of nonlinearity:  

 2 2

2 | | | | ,P Pos N NegU U  = −  (1) 

for 0P N   . The Nonlinear Schrödinger Equations 

(NSE) describing the propagation of beams have the 
form: 
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(2) 

This case was considered by many authors [4, 6‒10] a nd 
discussed using different attitudes – analytical [1, 4, 7, 9], 
numerical [10] or variational [6, 8]. 

 But the simplest solution of Eqs. (2) describes the case 
of vanishing field UNeg. Normalizing the wa ve f unct ion  

UPos together with the coordinates (x, z) gives NSE in  it s 
fundamental form: 
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The series of solutions of Eq. (3) can be obtained v ia 
Inverse Scattering Transform (IST) [4]. They represent 
solitons of different orders n = 1, 2,… The function Ψ n  is 

a  quotient of two complex combinations of n terms of the 

form                                                 with arbitrary real l, 

x0l, and z0l (l = 1,..n). The coefficients l determine the 

widths and heights of its individual components.  

A system of equations like Eqs. (2) for βP = βN  = 1  a nd  

focusing nonlinearity for both beams αP = 1, αN = –1  ha s 
an analytical solution known as Manakov solitons [4, 

10‒14]. Based on Manakov's solution, an analogous 
solution of the system [Eqs. (2)] for focusing-defocusing 
nonlinearity has been discussed in [4]. Both fields UPos 

and UNeg are described by solitons of the same order, bu t  
unfortunately this solution exists only for the special case 

where αP = αN = 1 and βP = βN = 1.  

The considered system of Eqs. (2) generalizes this case. 
To obtain Manakov-type solution we should  in t roduce 

additional amplitude factors γPos and γNeg:  
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Assume the real γPos and γNeg (their phases are included 
into initial phase factors of Ψn). Substituting Eqs. (4) in to  

Eqs. (2) we can prove that Eq. (3) is satisfied only for:  
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The requirement (4) implies that solitons of the both 

fields UPos and UNeg have not only the same order n , bu t  
the centra x0l of all their corresponding components f o r 
lPos = lNeg  = 1,.. n have the same positions. In addition, for 

any pair of component indices l1 and l2 the in it ia l phase 

differences                       are the same for both fields. 

In this paper we solve the system of Eqs. (2 ) a pply ing 

perturbation theory. This attitude is frequently applied  to  
describe various effects connected with interaction 
between solitons or with the medium [1, 5]. Although the 

UNeg field will not always be small relative to UPos, let  us 
treat it initially as a small perturbation. Expressing bo th 
fields as series with respect to a small constant quantity o  

of order of magnitude UNeg we have: 
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The unperturbed field UP
(0) satisfies the first equat ion o f 

the system (2) with vanishing UNeg. Its solution describes 

a soliton of arbitrary order n:  

 (0) (0)( , ) ( , ),P P nU x z x z=   (7) 
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with γP
(0) denoting the same symbol as in Eqs. (4) and (5), 

but written for vanishing UNeg. For n = 1 this solution 

gives:  
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with                     and                                   . The initial 

phase φ0P is arbitrary. 

By substituting the expansion (6) into the system (2), we 
prove that the first-order correction vanishes UP

(1) ≡ 0 

while UN
(1) satisfies the equation:  
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The equation for the Neg field UN
(1) is linear. Its solution 

gives a function with a profile like UP
(0), but it may have a 

different propagating term:   

 (1) (0)( , ) ( , ),i k z

N N PU x z a e U x z=  (10) 

Nevertheless, substituting (10) into Eq. (9), we prove that  

it is satisfied only for two cases: 1) βN = βP,  k = 0 or  2 ) 
UP

(0) =Ψ1  and                                     . Of particular 
interest is the second case, in which two solitons UPos and 

UNeg can correspond to two different wavelengths. 

But one can also consider solutions of Eq. (9), where 
instead of a  true distribution of the refractive index 

derived from the nonlinearity αN|UP
(0)|2 we substitute a 

distribution that is close, but slightly different. Assume 

that this slightly different distribution is given by:  

 ( )
2

(0) 2 2 2( , ) 2 ,P d d dU x z U A Sech x =  (11) 

The parameter ηd can slightly differ from one of the 

numbers ηP1...Pn, defining n-th order soliton (7), bu t  the 

relation between Ad and d are assumed the same a s the 

first-order soliton:                  . Moreover, to minimize 

deviation from the z-axis during propagation, assume a n 

approximately symmetrical shape of the soliton 

in the whole range of propagation. 

The approximation (11) gives the solution of Eq. (9):  

 ( )(1) (1) 2 ,Ni k z

N N P d N dU U A e Sech x  = =  (12) 

with                     but arbitrary amplitude γN
(1) (or AN) of  

UNeg field (the multiplier before Ud is for consistency with 

designations in expressions (4)).   

The first non-vanishing correction UP
(2) for UPos field 

satisfies a  much more complicated equation:  
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Nevertheless, assuming UN
(1) of the form (12) and: 

(2) (2) (0)

P P P PU U =  (14) 

we are able to find the solution of Eq. (13) f o r rea l γN
( 1 )  

and γP
(2). Substituting (12) and (14) into Eq. (13) gives the 

condition for the existence of this solution: 
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The obtained perturbed solutions of Eqs. (7)‒(15) 
contain at least one case of different propagation 
constants βN ≠ βP, but also cover the case o f   Manakov-

type solution, Eqs. (4)‒(5). To compare results following 
from these two attitudes, we should assume equal βN a nd  
βP, as in Eq. (5). Now we can see that treating (1)

Neg No                     

as a  small quantity we have: 
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Since the obtained second-order correction in expansion 
(16) is identical as (15), the conclusions f rom the exact  
Manakov-type solution (4)-(5) and the perturbation theory 

(7)‒(15) are the same for the same choice of parameters. 
But the perturbation theory gives more possibilities to 

change the parameters of the interacting solitons. 

By now the amplitude term γN
(1) is arbitrary, because Eq. 

(9) is linear. To establish this term let us define the 

overlap integral Q calculated using the initial field shapes:  
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Of course, 0 ≤ Q ≤ 1. During propagation the Neg 
soliton and central peak of the Pos soliton equal their 
widths. The amplitude of the UNeg field will decrea se o r 

increase, depending on the relation between N a nd  P . 
But its power always decreases to Q

2
 of the initial power 

(UNeg field is much smaller than UPos, so the power carried 

by Pos soliton hardly changes). This gives the rule 

enabling us to determine the amplitude of UNeg field:  

 ( )lim | 0, | | (0,0) | .d
Q Neg Neg

z
N

U U z Q U

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= =    (18) 

Of course, both solitons should retain their energy , as 

proved in [9]. But in the process of adjusting their widths 

some of the waves quickly escape outside the region  of  

interaction. Thus, the reduction in power applies on ly  to 

the fields that remain in the system still intera cting with  

each other.  

To check the obtained results numerically we a ssumed 
αP = 1, αN = 0.25, βP = 1 and βN = 0.8. As the input UPos 

beam we took a third-order soliton with the central peak 

corresponding to P = 3 at z-axis (xP10 = 0) and two side 
peaks approximately twice higher than the central peak. 

UNeg beam at the input contained the first -order so liton  

defined by parameter N = 10 with amplitude 2/3  heigh t 
of the central Pos peak. The other initial parameters have 

22 /P P Pk  =

(0)| ( , )|PU x z

22 /N Pd Nk  =

(0)2 / 2P P P P PA    = =

22 (1/ 1/ )P N Pk    = −

2 /d d PA  =
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been adjusted to obtain the side peaks clearly  separated 
from the central maximum. For these values in the inpu t 

plane on the x-axis we have 2 2| | 0.7 | | ,P Pos N NegU U                                     

which means that at the beginning of propagation the UNeg 
beam reduces the nonlinear susceptibility over 3 times, so 

the interaction of solitons cannot be considered weak. 

  
Fig. 1. Central heights of UPos and UNeg fields during propagation over 

the distance zK=500. UPos(0,0)=6.03, UNeg(0,0)=1.8. 

 In Fig. 1 we can see how the central heights of both 

solitons change during propagation. Note that the heigh ts 

of the two fields initially decrease, but after a distance o f 

about 70, fairly regular oscillations of  both a mplitudes 

remain in the system with a small relative amplitude o f 

3.4·10–4 for UPos and 5 times less for UNeg. Moreover, we 

can see that the amplitude of the Neg soliton changes 

rapidly at the very initial stage of propagation.  

  
Fig. 2. The change of power of the propagating Neg field (left) and 

comparison of the initial and final profiles (right). 

Analogous behaviour can be seen for the power MNeg = 

                            of the Neg soliton (left graph of Fig. 2). 

On the other hand, in the right graph one can observe that 
the profile of the Neg field and the central peak of the Pos 

field agree very well (the Pos field is scaled to obtain the 
same central heights). Adjusting Sech function to the final 

profile of both beams, we find d = 2.9686, which  is 1% 

less than the assumed value P = 3 for the initia l cen t ral 
peak. For the initial shapes of both considered so litons, 
we obtain Q = 0.7894, which gives the estimated value of 

power with a fairlygood 1% accuracy (the red line). Using 

the obtained d, one can calculate γN
(1) = 0.2874 and γP

( 2 )  

= 0.0103, which gives the final height of the Neg so liton 
drawn by the red line in the right graph of Fig. 1 
(accuracy 0.2% nevertheless is a  significant change) a nd  

the final height of the Pos soliton drawn by the black line 

in the left graph (accuracy 0.01%). 

Of course, the accuracy of the method increases for 

closer values of the central widths (closer P and N ). But 

it is also important to have a clearly marked peak in  the 

centre of the Pos soliton field distribution. In Fig. 3 we 

show the final fields for the initial central peak height 

equal 0.3 (the left graph) and 0.25 (the right graph) of the 

side peaks. All other parameters are the same. In the lef t  

graph one can hardly distinguish deformations (however 

both final fields lost their symmetry), but in the right 

graph we can see that propagation became unstable –  the 

Neg field is no longer guided by Pos soliton.  

  
Fig. 3. Deformations of the final profiles of Neg solitons. 

In conclusions, using the perturbation theory  we have 

found solutions in the form of a pair o f  so lita ry beams 
with different orders, propagating in the focusing-
defocusing medium. The proposed method gives very 

good quantitative results and calculated beams are stab le 
at long distances. Similar multi-hump solitons have been 
reported recently, however, in a  nonlocal nonlinear 

medium [13-15].  
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