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Abstract—The aim of this short review is to recall various designs of 

diffraction gratings when the condition of the period’s identity is relaxed 

and to mention some of this resulting applications. Among others, the 
apodization function can be implemented as a variable diffraction 

efficiency due to a gradual change of the period’s shape. Another 

possible application is passive achromatization of diffraction efficiency 
of blazed gratings by randomizing their blaze angle.  
 

 

By definition, a diffractive grating is understood as a set 

of equidistant identical periods. Thereby the transmittance 

of a diffraction grating can be expressed as:  
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D is the aperture of the grating, d means its period, and 

tP(x) stands for the transmittance of a single period.  

The intensity distribution in the far field diffraction zone 

of the grating will be proportional to the squared Fourier 

transform of the above expression and can be thus 

customarily written as a product of two factors. One of 

them, termed as the grating factor is the squared 

convolution of the comb function with the Fourier 

transform of the entire grating’s aperture given by 

rect(x/D) and divides the illuminating beam into 

diffraction orders. In turn, the second expression, termed 

as the period factor and appearing due to the Fourier 

transform of the single period’s transmittance, governs 

the distribution of energy between different diffraction 

orders, i.e., their diffraction efficiencies. The period’s 

identity condition means that tP(x) does not change along 

the period’s length but maintains its shape for all periods.  

However, there exist situations when departing from 

this condition may bring benefits. One of them is a 

possibility of implementing an amplitude function by 

making the diffraction efficiency spatially variable, e.g., 

for the purposes of apodization or beam shaping. Usually 

such manipulation requires an additional element with 

continuously varying amplitude transmittance and its 
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fabrication is quite troublesome from a practical point of 

view [1]. This difficulty can be avoided by applying an 

additional phase element which is diffracting light onto 

the principal one and creating on its plane the desired 

amplitude distribution [2‒3].  

A single diffractive element can be used instead of two, 

if its diffraction efficiency would be able to imitate the 

apodization function. Such attempts were realized, first in 

the case of binary gratings. In the case of amplitude 

binary gratings it can be achieved by changing 

correspondingly its opening ratio only [4‒6]. In the case 

of a binary phase grating it can be made also by splitting 

the phase step [7] or by changing locally the phase step 

height [8‒9].  

A further step (and greater efficiency) would be to 

change the shape of the period of multistep diffraction 

gratings which are obtained with multi-mask lithographic 

methods as an approximation of the blazed profile. There 

exist many ways of transforming gradually the grating 

into its conjugate counterpart and sending, by degrees, 

light from a given diffraction order into its conjugated 

counterpart, avoiding additionally the appearance of light 

in the neighbouring orders. Two of possible period’s 

shape transformations are shown in Fig. 1 after Refs. [10] 

and [11].  

 

 

 

 

 

 

 

 

 

 
Fig. 1. Conversion of a quaternary grating into its conjugate through an 

intermediate stage of binary phase grating by a) gradually increasing 

phase heights of the odd steps by  rad; b) gradually decreasing phase 

heights of the even steps and increasing the odd steps by /2 rad. 

The stepwise change of the diffraction efficiency allows 

to combine in one diffractive element both the 

distribution of amplitude and the phase of the diffracted 

wave and thus enabling numerous applications. Among 
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them one should mention the application of apodized 

phase masks for the exposure of the fiber Bragg gratings 

[12‒13]. This particular approach allows to decrease cross 

talks in the neighbouring channels thanks to decreasing 

sidelobes in their spectra due to the use of apodized fiber 

Bragg gratings. Additionally, a constant effective 

refractive index along the whole Bragg grating is ensured, 

which allows to avoid undesirable short-wavelength side 

broadening of its spectral characteristic [14]. Such phase 

masks with a varying height of phase step along their 

lengths can be manufactured with the help of High 

Energy Beam Sensitive (HEBS) glasses, which after e-

beam exposure are used as amplitude masks for the 

exposure of a final phase mask. This mask will have a 

varying phase step height if the photoresist layer with an 

approximately linear sensitivity curve will be applied 

[15]. Since the exposure of the Bragg fiber grating should 

take place at a proper distance from the phase mask in one 

of its Fresnel images plane, the influence of possible 

wrong placement of the fiber should be taken into account 

[16]. Another important issue is the appearance of higher 

harmonics and its effect on the performance of the grating 

[17‒18].  

The same principle of a local change in diffraction 

efficiency can be applied in the case of other diffractive 

optical elements with a known phase function. As an 

example, there can serve solutions for creating the Bessel 

beams, which can be considered as a special case of beam 

shaping. Since the Bessel beams have the transmittance of 

a mixed, amplitude-phase character, it is necessary to 

resort to application of a two-element setup, analogous to 

the case of beam shaping or apodization function 

implementation mentioned previously [19‒20]. Similarly, 

a single element containing the phase function of a linear 

axicon and with an additionally included amplitude 

function proportional to r‒1/2 will be an asymptotic 

expression for the Bessel function, which holds for large 

arguments [21‒23]:  

   420   rcosrrJ .                    (2) 

Diffractive optical elements with spatially variable 

diffraction efficiency probably have found the most 

widespread applications in the case of diffractive 

multifocal intraocular lenses (MIOL). In contrary to 

refractive IOLs, where a given part of the lens is related 

to a given value of optical power, the diffractive MIOLs 

have different foci associated with different diffractive 

orders and the whole surface of the element takes part in 

their creation [24‒26]. The spatially variable diffraction 

efficiency allows for an additional degree of freedom, 

namely, to introduce intentional gradual distribution of 

energy in particular foci as a function of aperture 

diameter, an important issue from a practical point of 

view (and lifestyle of the patient [27‒28]).  

Another example of application of binary phase gratings 

with a varying phase step can be found in calibrating of 

Spatial Light Modulators (SLMs) based on evaluation of 

Fresnel images. As it is well known, Fresnel images 

generated by a binary phase diffraction grating - in our 

case displayed on SLM - appear as binary irradiance 

distributions whose visibility depends on phase 

modulation [29‒32]. The introduction of a linearly 

increasing phase step height along its length, where the 

transmittance of a single period is given by: 
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φmax is the maximum phase change obtainable with the 

SLM device and Dy is the periods length, makes it 

possible to observe the resulting distribution of the 

visibility function in the corresponding Fresnel image in a 

manner similar to the interference fringe pattern with a 

carrier frequency, and not in a uniform field, as was the 

case in some of the previous approaches [33]. The 

visibility function of the Fresnel images in the case of 

perfect SLM takes then the following form of equidistant 

fringes:  
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and any improper value of phase is manifested as a 

deviation of fringes from the straight line.  

The identity condition of the grating’s period may also 

be affected by changing the profile of the period from one 

to another. In the case of binary phase gratings such 

analysis was performed in the case of a random change in 

the phase step height [34]. One of possible applications of 

such manipulation in the case of the blazed grating could 

be a trial of diffraction efficiency achromatization. As it is 

commonly known, the diffraction efficiency of the blazed 

diffraction grating achieves 100% efficiency only for a 

single, blazed wavelength λB and. in general. is described 

as follows [35]:  

  Bcsin  1                       (5)  

One of possible proposed solutions are two aligned 

sandwich diffraction gratings made of materials with 

properly matched refractive indexes [36-39] or space-

variant manipulation of the state of polarization by 

applying birefringent binary diffractive structures [40], 

[41]. Another possibility would be to optimize the heights 

and widths of phase steps composing the period of the 

quaternary grating [42] or to modify its pitch width [43].  

All these solutions retain the condition of period’s 

identity. Another approach is possible when the blaze 
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angles of gratings’ periods are distributed randomly 

around a certain mean value [44]. Similar or even better 

results are obtained when there are only two different 

blaze angles distributed randomly among different 

periods across the grating’s aperture [45]. Basing on such 

arrangements, spectrometers with a flattened spectral 

response are possible to design [46].  

 

 
 

Fig. 2. Diffraction efficiency vs wavelength. Blue line - the blazed 

grating with blaze wavelength λ0 = 580 nm according to Eq. (5). Black 

line – the grating optimized in the spectral range 380‒780 nm and with 
two values of the blaze angle only (λ1 = 485 nm, 74.3% of all facets, 

λ2 = 815 nm, 25.7% of all facets). 

 

A review of different advantages was made by leaving 

out the identity condition of all periods of diffractive 

optical elements. For the lack of space, this review is far 

from being complete, nevertheless some important 

practical applications were outlined. One of them results 

from the introduction of variable diffraction efficiency 

making possible the exposure of apodized fiber Bragg 

gratings or design of diffractive multifocal intraocular 

lenses. Another one indicates the possibility of obtaining 

diffractive gratings with a flattened spectral response.  
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