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Abstract — In the paper the propagation of temporal pulses through 
generalized saturable nonlinear Kerr-like media is described analytically. 
The influence of symmetry conditions on relations between phase and 
amplitude is analyzed. These relations introduced into a canonical 
description of propagation enable a solution of the Euler-Lagrange 
equations. The accuracy of a canonical description is discussed.   
 
 
In saturable Kerr-like media the envelope U(z,t) of a 
pulse propagating along z-direction satisfies the 
generalized nonlinear Schrödinger equation (GNSE or 
NSE with higher-order effects) [1-3]: 
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In Eq. (1) k2 designates group velocity dispersion, ε - 
nonlinear permittivity, γ - nonlinear dispersion coefficient 
and κ − 1 (for real κ) - relative coefficient of retardation of 
nonlinear response due to Raman effects. The indexes 
after functions denote differentiation over the indicated 
coordinates. The initial three terms are symmetric with 
respect to time t while the other two – antisymmetric. 
Nevertheless lack of symmetry Eq. (1) can possess 
solutions with symmetric amplitude r(z,t)=|U(z,t)| = 
r(z,−t) on condition that the phase profile is neither 
symmetric nor antisymmetric. Expressing U by means of 
amplitude and phase U(z,t)=r(z,t)exp(i φ(z,t)) and writing 
the phase in the form of sum of antisymmetric and 
symmetric part φ(z,t)=φ(a)(z,t)+φ(s)(z,t) we obtain from 
(1): 
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where:  
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(two other equations resulting from (1) have no simple 
interpretation). If r2φt vanishes sufficiently fast for t→∀∞ 
(for instance when r describes bright soliton) the first 
equation (2) gives conservation of total intensity:  
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while the second one expresses the antisymmetric part of 
the phase as a function of amplitude profile:  
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Equation (1) has no analytic non-stationary solution. 
Nevertheless, applying the Lagrange method [4-6] we are 
able to describe the propagation of non-stationary pulses 
approximately. The real and imaginary part of GNSE (1) 
can be written in this method in the form:  

 ,
z t zz tξ ξ ξ ξ

∂ ∂ ∂ ∂ ∂ ∂
− − =

∂ ∂ ∂ ∂ ∂ ∂
     (6) 

(ξ stands for U and U* or r and φ) and contains known 
from mechanics Rayleigh density function   [7] 
together with Lagrange density  . Choosing:  
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(ε′ means dε (I)/dI and   is Hamilton density) we can 
check the equivalence of Eqs. (6) and GNSE (1). 

Integrating densities (7) over the plane z=const we 
obtain lagrangian, Rayleigh function and hamiltonian:  
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Function G=G(r2(z,t)) appearing in integrand of R(z) is:  

 
22

2 2

0 0

( ) ( 1) ( ) ( ) .
I I

G I I dI I dI
I
κκ ε ε

 
= − −  

 
∫ ∫  (9) 

Let us differentiate the definition of Hamilton density 
over z, next apply the Euler-Lagrange equations (6), 
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express the antisymmetric part of the phase φ(a) using (5) 
and then integrate over plane z=const. Doing so we derive 
the law of conservation dH/dz+R=0, so:  
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Therefore, in generalized saturable medium the conserved 
quantity is not pure hamiltonian H, but its sum with a 
term determined by Rayleigh function R. 

Assume parabolic profile of phase function φ(s)(z,t) and 
amplitude r(z,t) as the product of height function b(z) and 
shape function  f  (satisfying condition f(0)=1). Let f 
depend on z only by means of pulse width w(z):  
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The above assumptions give the Lagrange, Rayleigh and 
Hamilton functions in the form:  
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where coefficients Cc, Ck and C1, …, C3 are constant 
numbers denoting shape integrals:   
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Any generalized coordinate ξ satisfies the Euler-
Lagrange equation ∂L/∂ξ−∂/∂z(∂L/∂ξz)−∂/∂t(∂L/∂ξt)=∂R/∂z. 
For ξ=β and ξ=θ the resulting equations are very simple: 
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Comparing the first line of (14) and (4) we identify P as 
total intensity. Two remaining equations obtained for ξ=b 
and ξ=w give two more relations – one expressing β′ and 
the other being a second-order differential equation 
determining w(z). This last equation integrating once 
gives the same relation as the law of conservation (10):  
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with:  
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Function V=V(w(z)) can be treated as potential and  as 
canonical energy.  

The energy integral (15) can be solved giving a formula 
expressing inverse function of evolving pulse width:  
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For cubic-quintic nonlinearity ε (I)=ε2(I−I2/Isat) we have: 
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In G(I) terms of order I4/Isat and I5/I2
sat were neglected, 

what means that the obtained solution will be valid only 
for small γ or small I/Isat. But due to the above 
approximation potential (16) is given by a simple 
formula:  
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and integration (16) is possible to perform analytically. 
Two initial terms in (19) determine the potential in Kerr 

medium VKerr, the remaining two describe the influence of 
saturation and higher-order effects. 

 
Fig. 1. Potential in Kerr and generalized medium.  
 

In Fig. 1 we show the plots of potentials V(w) and 
VKerr(w) corresponding to the shape function given by:  
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describing the amplitude of bright solitons in cubic-
quintic medium. A pulse propagating in such a potential 
oscillates – its width periodically changes between values 
lying at the intersection of potential and energy level Ε. 
The maximum of potential curves corresponds to 
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stationary solutions – solitons. Their width and height 
are:  
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Integration (17) for potential (19) gives:  
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where two coefficients Δ and Λ denote:  
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The solution (22) determines the pulse of a width w 
between wmin and wmax expressed by:  
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Since ∆=(wmax−wmin)/(wmax+wmin) we can interpret it as 
relative amplitude of oscillations. Analogously, Λ is the 
period of oscillation. 

 
Fig. 2. Oscillations of pulse width b(z) in generalized cubic-quintic 
medium. Comparison of analytic and numeric solution. 
 

Comparing the obtained approximate analytic solution 
and the numeric one (Fig. 2) we observe that the field 
height calculated numerically agrees with analytic 
formula (20) only at very beginning. During propagation 
the amplitude of oscillations significantly diminishes and 
the period increases, although its changes are not so large. 
The disagreement is not caused by higher-order terms in 
GNSE, appearance of Rayleigh function in the Euler-
Lagrange equations or applied approximation in potential 

(19) – we shall observe a very similar behavior 
considering the propagation of Sech-pulse in pure Kerr 
medium. On the contrary, by choosing a more appropriate 
profile (20) instead of Sech (however for considered 
material parameters the widening coefficient σ is small 
σ=0.061), the amplitude of oscillations diminished twice 
(as we can observe comparing dotted grey and solid red 
line in Fig. 2) and stationary values (21) correspond 
almost exactly to numeric ones. But the investigation of 
numeric phase profile leads to the conclusion that it is not 
parabolic, as assumed in the applied method (Fig. 3). 

 
Fig. 3. Numeric phase profile in Kerr and generalized medium.  
 

The second reason of disagreement is pulse spreading, 
nevertheless the total intensity P is conserved. Both 
mentioned reasons mean, that an authentic field should be 
described by a much more complicated function than 
given by (19) and (10). Unfortunately, the complication 
of a trial function causes the Lagrange function (9) to be 
much more complex. Also by increasing the number of 
pulse parameters we increase the number of the Euler-
Lagrange equations. As a result, the problem can be 
unsolvable analytically.  

To summarize, the use of the Rayleigh function in the 
Euler-Lagrange equations and the application of adequate 
symmetry conditions causes better description of 
propagating pulses. But the neglect of certain effects 
important during pulse evolution results in not all pulse 
parameters being calculated exactly – some of them agree 
only roughly.  
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